
5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 1/14

Using Portainer with Docker and Docker
Compose
10 minute read Updated: April 17, 2023

James Walker

We’re Earthly. We make building software simpler and therefore faster. If you’re interested

in a simple way to build containers then check us out.

Docker’s CLI and API are powerful tools, but they can be unwieldy when you’re working with

large container fleets or looking for a more visual experience. Portainer, a web-based Docker

management system that provides a convenient graphical user interface (GUI), lets you take

charge of your containers, images, volumes, and other resources, without memorizing long

terminal commands.

Portainer can be used to monitor your Docker installation, interact with containerized apps, and

deploy new stacks with minimal effort. A single Portainer instance can connect to multiple

Docker hosts, centralizing your container management around one application. It also supports

other container environments beyond Docker, including Kubernetes clusters and Azure

Container Instances.

This article will show you how to set up and start using Portainer. You’ll also learn the benefits

of some of Portainer’s headline features, such as how to deploy apps with built-in templates

and your own Compose files.

What Is Portainer?

Portainer is a container management interface. It started out as a GUI for Docker but has

expanded to support several other container environments. It has more than 1 million users

and over 22,000 GitHub stars. Two versions are available: the free and open source Community

Edition (CE) and a paid Enterprise Edition (EE).

https://earthly.dev/
https://earthly.dev/blog/docker-multistage
https://earthly.dev/
https://www.portainer.io/
https://earthly.dev/blog/rails-with-docker
https://kubernetes.io/
https://azure.microsoft.com/en-us/products/container-instances/#features
https://www.portainer.io/
https://earthly.dev/blog/docker-slim
https://github.com/portainer/portainer

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 2/14

Portainer dashboard

You can use Portainer whenever you want to interact with your containers from a graphical

interface. CLI commands and API endpoints are often handy in development but less ideal for

managing production applications. With Portainer, you can easily monitor multiple endpoints

and allow team members to access a shared deployment environment.

Implementing Portainer

Portainer is usually deployed in its own container. This article assumes you’re using Docker, but

you can also run Portainer directly in Kubernetes by deploying with the official Helm chart.

Here’s an overview of the steps required to get Portainer running:

Install Docker

Create a new container that runs Portainer

Log into the Portainer UI to set up your initial user account

Use Portainer or the Docker CLI to manage your Docker environment

The following sections will detail each of these steps in turn.

https://docs.portainer.io/start/install/server/kubernetes
https://helm.sh/

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 3/14

Installing Docker

Before you go any further in this tutorial, you’ll need to install Docker. If you’re using Windows

or Mac, download, and run the latest version of the Docker Desktop installer. Linux users can

try the experimental version of Desktop for Linux or use the following steps to install Docker

Engine.

Docker Engine is distributed in the package repositories of all major Linux distributions. It’s also

available as a direct download in DEB or RPM format. You can obtain detailed instructions for

each method and platform from the official Docker documentation. The following steps

assume you’re installing from the repository on a Debian-based system.

To begin, install the dependencies required by running the following commands:

$ sudo apt-get update

$ sudo apt-get install ca-certificates curl gnupg lsb-release

Next, add the GPG key used to sign the Docker repository:

$ sudo mkdir -p /etc/apt/keyrings

$ curl -fsSL https://download.docker.com/linux/debian/gpg | \

sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

This lets the apt package manager verify the source of your download. Now add the

repository to your package list with the following command:

$ echo "deb [arch=$(dpkg --print-architecture) \

signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/debian \

 $(lsb_release -cs) stable" | sudo tee \

 /etc/apt/sources.list.d/docker.list > /dev/null

The interpolated commands allow automatic selection of the correct list for your system.

Docker can now be installed with the following command:

$ sudo apt-get update

$ sudo apt-get install docker-ce docker-ce-cli containerd.io

The docker CLI requires root privileges by default. You can avoid prefixing commands with

sudo by adding yourself to the docker group:

>_

>_

>_

>_

https://docs.docker.com/get-docker
https://docs.docker.com/desktop/install/linux-install
https://docs.docker.com/engine/
https://docs.docker.com/engine/install

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 4/14

$ sudo groupadd docker

$ sudo usermod -aG docker $USER

Log out and log back in to apply the change.

Finally, test your installation by starting a container with the Hello World image:

$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

2db29710123e: Pull complete

Digest: sha256:7d246653d0511db2a6b2e0436cfd0e52ac8c066000264b3ce63331ac66dca625

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

...

Installing Docker Compose

Although not required to use Portainer, Docker Compose is a popular utility that makes it

easier to manage containers in your terminal. Compose will be used in the next step to start

Portainer.

Docker Compose used to be an independent binary but has now been integrated into Docker

as a plugin. It’s included with Docker Desktop and can be added to the Docker Engine

installation configured earlier by running the following command:

$ sudo apt-get install docker-compose-plugin

You should now be able to use docker compose in your terminal:

$ docker compose version

Docker Compose version v2.6.0

Deploying Portainer

Portainer has a few dependencies that must be supplied when you start your container:

It requires a volume to store persistent data.

>_

>_

output

>_

>_

https://docs.docker.com/compose/
https://earthly.dev/blog/rails-with-docker

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 5/14

Your host’s Docker socket should be mounted into the container so that Portainer can

access and interact with the Docker daemon.

You need to bind a port to the container so you can access the web UI.

This requires several flags to be used when you start Portainer with docker run :

$ docker run -d \

 -p 9443:9443 \

 --name portainer \

 --restart unless-stopped \

 -v data:/data \

 -v /var/run/docker.sock:/var/run/docker.sock \

 portainer/portainer-ce:latest

A better way to start Portainer is to use Docker Compose. This lets you write the container’s

configuration into a file so you can bring up the app with a single command. To do so, save the

following file as docker-compose.yml in your working directory:

version: "3"

services:

 portainer:

 image: portainer/portainer-ce:latest

 ports:

 - 9443:9443

 volumes:

 - data:/data

 - /var/run/docker.sock:/var/run/docker.sock

 restart: unless-stopped

volumes:

 data:

This encapsulates all the flags given to the docker run command in the previous example.

Here, the image field is set to portainer/portainer-ce:latest to use the latest Portainer

CE release from Docker Hub. Change this to portainer/portainer-ee:latest if you’ve

purchased an Enterprise Edition license.

The ports field sets up a port binding from your host to the container. You’ll be able to access

the Portainer UI by visiting https://localhost:9443 . Portainer provides a self-signed HTTPS

certificate, which you can override by mounting your own into the container.

The volumes field sets up a data volume that’s mounted to /data inside the container.

Portainer will write your settings to this location, allowing them to persist after the container

>_

docker-compose.yml

https://earthly.dev/blog/what-is-buildkit-and-what-can-i-do-with-it
https://docs.portainer.io/advanced/ssl#using-your-own-ssl-certificate-on-docker-standalone

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 6/14

restarts. The host’s Docker socket, /var/run/docker.sock , is bind mounted straight into the

container so Portainer can manage the Docker installation it’s running within.

Finally, the restart field is set to unless-stopped , so Docker automatically starts Portainer

after the host reboots unless you manually stop the container first.

Now you can use this Compose file to bring up Portainer:

$ docker compose up -d

Next, head to https://localhost:9443 in your browser. You’ll see a security prompt if you’re

using Portainer’s built-in SSL certificate. This configuration shouldn’t be used in production or

when Portainer is exposed on a public network, but this is safe for local use.

Once you’ve acknowledged the prompt, you’ll get to Portainer’s first run screen. Create your

initial user account by entering a username and password and pressing Create user:

Creating an initial Portainer user account

You’ll be taken to the environment setup wizard. This is where you connect Portainer to your

containerization systems. Click the Get Started button to continue with the local Docker socket

mounted into the container from your host, and you’ll end up on the Portainer dashboard:

>_

https://docs.docker.com/storage/bind-mounts
https://localhost:9443/

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 7/14

Portainer’s environment setup screen

Touring the Portainer Dashboard

The dashboard provides an overview of all the environments you’ve added to Portainer.

Although there’s only your local environment at the moment, you could add Kubernetes

clusters and other remote Docker hosts in the future:

Portainer dashboard

Each environment gets a summary tile, giving quick insights into the number of running,

stopped, and healthy containers, as well as counts of the images and volumes available. The

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 8/14

sidebar to the left of the screen is where you can navigate between environments, resource

types, and application-level global settings:

Portainer’s environment-specific dashboard

Clicking into an environment takes you to its own dashboard that summarizes the number of

available resources. Clicking any resource type displays a table enumerating all the objects in

the environment. Action buttons at the top of the screen are available to perform context-

specific functions, such as stopping a container or deleting an image:

Viewing containers in Portainer

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 9/14

Deploying an Application with Portainer Stacks

Portainer provides several options for deploying new applications. One of these is stacks, a thin

wrapper around Docker Compose functionality. A stack is a collection of one or more containers

that collectively provide a complete application. You could have a stack consisting of an API, a

database, and a frontend web UI:

The Stacks screen in Portainer

To create a new stack, click the Stacks menu item on the left sidebar and then press the Add

stack button on the top-right. There are four ways to define a stack:

Web editor: This lets you type out a Docker Compose file manually.

Upload: This lets you upload an existing Docker Compose file from your machine.

Repository: This automatically loads a Compose file directly from a Git repository.

Custom template: This lets you can create your own reusable templates by heading to App

Templates > Custom Templates on the left sidebar.

Here’s a sample Compose file you can try:

services:

 db:

 image: mysql:8.0

 environment:

 - MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}

>_

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 10/14

 - MYSQL_DATABASE=${MYSQL_DATABASE}

 - MYSQL_USER=${MYSQL_USER}

 - MYSQL_PASSWORD=${MYSQL_PASSWORD}

 volumes:

 - db:/var/lib/mysql

 wordpress:

 image: wordpress:latest

 ports:

 - 8880:80

 environment:

 - WORDPRESS_DB_HOST=db

 - WORDPRESS_DB_USER=${MYSQL_USER}

 - WORDPRESS_DB_PASSWORD=${MYSQL_PASSWORD}

 - WORDPRESS_DB_NAME=${MYSQL_DATABASE}

volumes:

 db:

This Compose file includes two services that run a basic WordPress site. Enter a name for your

stack at the top of the screen, then paste the WordPress Compose file into the editor:

Portainer’s stack editor

The Compose file uses environment variable substitution with ${VARIABLE} syntax to

configure the database connection. You need to supply values for these variables when you

start your stack. To do this, scroll down the page and press the Add an environment variable

button to create a new key-value pair. Repeat this for the four required variables:

MYSQL_ROOT_PASSWORD

MYSQL_DATABASE

MYSQL_USER

https://wordpress.com/

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 11/14

MYSQL_PASSWORD

Setting Portainer stack environment variables

Press the blue Deploy the stack button at the bottom of the screen to start your services. It

may take a few minutes for Portainer to pull the required images and create your containers.

You’ll then be taken to the stack’s page, which shows the details of the running containers. You

can access the created WordPress site by heading to http://localhost:8880 in your browser:

Viewing a running stack in Portainer

http://localhost:8880/

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 12/14

Deploying a Portainer Template

Templates are an even easier way to launch new application instances. Portainer comes with a

set of built-in templates for popular apps. These can be reached by heading to App Templates

on the left sidebar. You can also create your own templates based on Compose files:

Portainer’s built-in app templates

You could replicate the WordPress site created earlier by using the official WordPress template.

Head to Add Templates and enter “wordpress” into the search bar at the top of the screen:

Searching for the WordPress app template in Portainer

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 13/14

The template comes preconfigured with the services you need to run a WordPress site. You

only have to supply a name for your stack and the root password to set it on the MySQL

database server. Enter these into the fields at the top of the page, and then press the Deploy

the stack button at the bottom:

Deploying the WordPress app template in Portainer

Wait while Portainer pulls your images and creates your containers. The container will be

assigned a random port by default. You can find it by navigating to the stack’s details page and

then scrolling the Containers table so you can view the port published by the WordPress

service. This example is accessible on localhost:49153 :

5/24/23, 8:50 AM Using Portainer with Docker and Docker Compose - Earthly Blog

https://earthly.dev/blog/portainer-for-dcm/ 14/14

Viewing a running stack in Portainer

Conclusion

Portainer is a convenient and feature-rich interface for Docker containers and other

environments. It brings almost all the capabilities of the Docker UI to your web browser, letting

you perform management operations on any device.

Portainer is ideal for many different use cases, from your local development workstation to

production app monitoring. You can also use it to track containers and images used by CI/CD

pipelines and build systems, preventing excess resources from accumulating on your Docker

host.

James Walker

James Walker is the founder of Heron Web, a UK-based software development studio

providing bespoke solutions for SMEs. He’s experienced in delivering custom software

using engineering workflows built around modern DevOps methodologies. James is

also a freelance technical writer and has written extensively about the software

development lifecycle, current industry trends, and DevOps concepts and

technologies.

Writers at Earthly work closely with our talented editors to help them create high quality tutorials. This

article was edited by:

Bala Priya C

Bala is a technical writer who enjoys creating long-form content. Her areas of interest

include math and programming. She shares her learning with the developer

community by authoring tutorials, how-to guides, and more.

Updated: April 17, 2023

Published: November 26, 2022

https://www.portainer.io/
https://earthly.dev/blog/authors/bala/

