
JS Mastery Pro

The Ultimate

 EbookNext.js

Chapter 1

The Birth
In the first chapter, we explore the evolution of JavaScript and web

development frameworks. We discuss the significance of embracing

new technologies and compare code snippets in different frameworks

to highlight their benefits. We introduce Next.js as a framework built on

React.js, addressing limitations and incorporating new features.

The chapter concludes with the recommendation to shift focus to

Next.js for building modern web applications.

The Birth

Not too long ago, in 2015, React.js entered the scene. However, even the

journey of JavaScript in the IT industry hasn't been exceptionally long.

Originally developed by Brenden Eich at Netscape in 1995, JavaScript

gained significant popularity during the 2000s.

This was largely due to Google's ingenious utilization of JavaScript to

introduce interactive and dynamic features for map exploration.

Subsequently, developers were introduced to frameworks and libraries,

including jQuery, Angular, Node.js, React.js, and, most recently, Next.js.

These technologies have revolutionized the web development

landscape, offering developers various capabilities and possibilities.

You might wonder why this information is relevant in the context. The

significance lies in the fact that it highlights the timeless truth that

"change is constant." As we continue to advance and evolve as a

society, our tools and technologies will naturally progress alongside us.

We have no other option but to embrace and adapt to these changes. It

serves as a reminder that our willingness to embrace new ideas and

technologies is essential for growth and success in the ever-changing

IT industry landscape.

These technologies and tools share a common purpose: to enhance

work efficiency and improve performance. In this era, we can still use

vanilla JavaScript or create websites using HTML and CSS without a

doubt.

The Birth

However, when it comes to developing applications on a large scale,

the efficiency of using the latest technologies surpasses that of

traditional approaches. To showcase and experiment with this concept,

we have created a video on " "

on our YouTube channel. You can personally analyze the amount of

code and the level of efficiency demonstrated in the video.

How to create a website using HTML & CSS

To provide a brief glimpse of the evolution in JavaScript coding

practices, here is a well-known code snippet implemented in various

frameworks, starting from the core JavaScript language itself — The

Hello World:

Vanilla JavaScript

// HTML: <button id="btn">Click Me</button>

document ()

(

)

. ' '
 . ' ', () {

' ' ;

 } ;

getElementById
addEventListener

alert

btn
click

Hello, World!
function

 ()

jQuery

// HTML: <button id="btn">Click Me</button>

$ click
alert

() (

)

' ' . () {

' ' ;

} ;

#btn
Hello, World!

function
 ()

The Birth

https://youtu.be/QRrPE9aj3wI

Angular

<!-- : < (click)="showMessage()">Click Me</button> -->

 { } ' ';

@Component({

 selector: ' ',

 template: `<button (click)="showMessage()">Click Me</button>`

})

 {

void {

(" ")
}

}

 Component

 ():
 ;

HTML button

alert

import from

export class ExampleComponent

@angular/core

app-example

Hello, World!
showMessage

React.js

import from ' ';

. {

() {

' ' ;

}

() {

return < ={this. }> </ >;

}

}

 React

showMessage Click Me

react

Hello, World!

class extends

onClick

ExampleComponent React Component
showMessage

 ()

render
 button button

alert

“Ah? From what I see, there's an increase in the amount of code being

written. It appears to be in complete opposition to what was mentioned

earlier” — Are you thinking the same?

If we look at it solely from this perspective, one would certainly feel that

the original language and framework require less code.

The Birth

However, it's important to consider the bigger picture. And that's what

truly matters, doesn't it? In reality, we don't just build "Hello World"

projects. We undertake more substantial projects that demand the

utilization of various frameworks and tools to achieve the desired

functionality and scalability.

We could have talked about the “big picture” of using React or even

Angular over vanilla code, but that is not the primary focus of this

eBook. However, it is worth mentioning a few foundational reasons why

these new tools make development more efficient:

Architecture — React and Angular follow a Component-Based

Architecture, encouraging code reusability. For instance, if you create a

component like a Button, you can use it anywhere in the application as

often as needed. This reusability enhances the maintainability and

scalability of the application.

Virtual DOM — The Virtual DOM is a lightweight representation of the

actual DOM. It facilitates efficient and optimized updates to the user

interface, resulting in improved performance. Simply put, it tracks

changes within the application and performs a "diffing" process by

comparing the previous version of the virtual DOM with the new version.

It identifies the differences and updates the real DOM accordingly.

Ecosystem & Community — Modern libraries like React.js have vibrant

and active communities. This provides developers with abundant

resources, extensive documentation, reusable code packages, bug

fixes, and support.

The Birth

… and many other libraries or framework-specific reasons that you can

explore. To truly appreciate the impact, I would once again recommend

visiting the YouTube videos we created, where you can experience

firsthand what it takes to build a simple landing page using two

different tools to measure the efficiency of these tools:

Build and Deploy a Sushi
Website using HTML & CSS

Watch and Code Now

Build and Deploy a Bank
Website using React.js

Watch and Code Now

But hey, where does Next.js come in the picture?

As mentioned earlier, as we continue to progress, technology also

advances. jQuery addressed the limitations of vanilla JavaScript, and

then React.js emerged to overcome the shortcomings and loopholes of

jQuery. However, even React.js has its own challenges, which have now

been addressed by another tool called Next.js.

It’s a big misconception that Next.js is a new language or library. No!

The Birth

https://youtu.be/QRrPE9aj3wI
https://youtu.be/_oO4Qi5aVZs

Vercel, the team behind Next.js, embarked on a unique approach to
develop a framework encompassing client-side (frontend) and server-
side (backend) functionalities within a single application. Guillermo
Rauch, the original creator of Next.js and the mastermind behind
Socket.IO, began working on this idea in 2016.

Over the course of a year, they continuously added new features such
as file-based routing, automatic code splitting, hybrid rendering,
internationalization, image and font optimization, and many more.

The relentless dedication of the Vercel developers, coupled with their
ability to transform diverse ideas into reality, has caught the attention
of Meta (previously known as Facebook) — the creators of React.js. Meta
now explicitly recommends that developers use Next.js as their primary
tool instead of relying solely on React.js. It's an extraordinary
achievement!

And that’s how we developers now need to shift our focus to the latest
and greatest version, Next.js 13, to build highly capable and production-
ready applications. This exciting evolution opens up new possibilities
and opportunities for creating advanced web applications.

Onto the next chapter…

The Birth

Chapter 2

Introduction
In this chapter, we'll dive into Next.js, a flexible React framework. We'll

explore its advantages over React.js, including simplified frontend

development, reduced tooling time, and an easy learning curve. We'll

also discuss how Next.js improves performance, enhances SEO, and

keeps advancing with new features.

By the end, you'll grasp the importance of mastering Next.js and be

prepared to embark on an exciting journey with this framework.

Introduction

Next.js — A flexible React Framework. But what does that mean?

In software development, a framework serves as a tool equipped with

predefined rules and conventions that offer a structured approach to

constructing an application. It provides an environment that outlines

the overall architecture, design patterns, and workflows, allowing

developers to focus on implementing specific application logic rather
than dealing with low-level design.

Simply put, a framework provides pre-built solutions for common

functionalities such as integrating databases, managing routing,

handling authentication, and more.

So what sets Next.js apart from React.js? — Next.js introduces plenty of

features and capabilities that we will dive into in the upcoming chapter

in detail.

But what you need to understand is Next.js is essentially an extension of

React.js, incorporating pre-built solutions, ready-to-use features, and

some additional functionalities. In other words, Next.js is built on top of

React, expanding its capabilities.

If you’re already a React.js developer, the Next.js journey will be silky

smooth. If you don’t know React.js, you should familiarize yourself with

some of the main foundations of React.js, i.e., How to create a

component, state management, code structure, etc.

Introduction

To help you learn faster, we have a crash course on React.js that covers

all the important things and includes a project for you to practice and

test your skills:

React.js Crash Course

Watch and Code Now

But Why should you use a React Framework — Next.js?

React is constantly evolving and revolutionizing the way websites are

built. It completely transforms your approach to designing and

developing applications.

It begins by encouraging you to think about components, breaking

down the user interface into small pieces of code. You describe states

to introduce interactivity and establish connections between these

various components, shaping the flow of your application.

Implementing the great React architecture requires deep integration

between all parts of your application, and this is where frameworks

come in:

Less tooling time

Every aspect of frontend development has seen innovation, from

compiling, bundling, minifying, formatting, etc., to deploying and more.

Introduction

https://youtu.be/b9eMGE7QtTk

With Next.js, we won’t have to worry about configuring these tools, thus

investing more time in writing React code.

We can focus more on business logic using open-source solutions for

routing, data fetching, rendering, authentication, and more.

Easy Learning Curve

If you are familiar with React.js, you will discover Next.js is considerably

simpler.

Next.js, built on the foundation of React.js, offers exceptional

documentation that provides comprehensive and detailed information

on the why and how of using Next.js. The " "

guide developed by the Vercel team is regarded as one of the best

resources for the learning experience.

Introduction | Learn Next.js

The constant updates and help from the community make the

development process even easier.

One of the key aspects of Next.js is that it is not just a Frontend React

Framework but a Full Stack React Framework enabling you to write

backend code alongside your frontend code.

How does it contribute to an "Easy Learning Curve"? Wouldn't it be

another thing to learn?

Absolutely not.

The backend aspect of the code you'll be working with is much simpler

than you might anticipate. There's no need to set up anything or

configure any routes as we have to do for any traditional backend app.

Introduction

https://nextjs.org/learn/foundations/about-nextjs

In fact, the Vice President of Vercel, Lee Robinson, expressed the
following viewpoint:

Moving from React + Express + Webpack to a framework
resulted in removing and

 – while improving HMR (Hot Module
Reloading) from .

20,000+ lines of code 30+
dependencies

1.3s to 131ms

If the backend and tooling aspects discussed here seem confusing,
there's no need to worry. In the upcoming chapters, we will dive into a
practical comparison of how things are done with React.js and
Express.js, as well as how both can be accomplished within Next.js.

Improved Performance

Next.js offers built-in features like server-side rendering, static site
generation, and automatic code splitting, which optimize application
performance by enabling faster initial page loads, improving SEO, and
enhancing the user experience.

However, it doesn't mean server-side capabilities are limited to Next.js
alone. React has introduced a new concept called React Server
Components, which allows rendering components on the server side.

So, why choose Next.js over using React alone?

The advantage lies in the convenience and productivity provided by
Next.js. By utilizing Next.js, you can leverage the existing features of
React without the need for extensive setup and configuration.

Introduction

https://vercel.com/blog/migrating-a-large-open-source-react-application-to-next-js-and-vercel

Next.js automates many aspects, allowing you to focus more on utilizing
the features rather than dealing with infrastructure & boilerplate code.

This approach follows the principle of "Convention over Configuration,"
streamlining the development process and reducing the amount of
code you need to write compared to implementing React Server
Components independently.

SEO - Search Engine Optimization

Perhaps the most ignored and must topic in an application’s life, and
the only drawback of React.js.

The key difference lies in the rendering approach between Next.js and
React.js.

Search engine crawlers are like busy visitors to websites. They come
and ask for the content of pages. They explore the links on those pages,
carefully examining and organizing them for ranking purposes. This is
what they do every day. To do their job well, they need to be able to
access the content of the website pages.

React.js renders everything on the client side, sending a minimal initial
HTML response from the server. The server sends a minimal HTML file
code and a JavaScript file that the browser executes to generate the
HTML. This poses a challenge for search engine crawlers to access and
understand the complete content of the page.

On the other hand, Next.js provides the option of Static Site Generation
(SSG) or Server Side Rendering (SSR).

Introduction

With SSG or SSR, the server sends the complete HTML file and minimal
JavaScript code to render only the content requiring client-side
interaction. This enables search engine crawlers to access easily and
index every page of the Next.js website accurately.

But, now you might wonder, "Why should I prioritize SEO?"

SEO is essential for making your website visible and highly ranked in
search engine (browser) results. When you focus on SEO, you get
several benefits, like more people visiting your website, better user
experience, increased trust and credibility, and an advantage over your
competitors because your website shows up higher in search results.

Giving priority to SEO can greatly impact how well your website does
and how many people find it online.

Always Advancing

Next.js, the ever-evolving framework, consistently introduces new
features to simplify developers' lives. With over 7+ versions released last
year, Next.js focuses on innovation and improvement for a better user
experience. This is precisely what frameworks like Next.js aim to achieve,
making development easier and more efficient.

On top of that, other technologies like Expo, used for building React
Native projects, are also adopting Next.js's groundbreaking features.

Inspired by Next.js's file-based routing system, Expo developers have
implemented a similar feature — Expo Router to improve the decade-
old routing system in React Native.

Introduction

https://expo.github.io/router/docs

Isn’t that great? Master one feature and effortlessly utilize it across
multiple platforms

However, the list of features provided by Next.js goes beyond what has
been mentioned so far.

It offers a wide range of capabilities, including seamless file-based
routing, efficient code splitting, image & font optimization, HMR(Hot
Module Replacement), API Routes(backend), built-in support for Sass,
CSS modules, data fetching choice (SSG, SSR, ISR), error handling,
Metadata API (For SEO), Internationalization(support for any spoken
language), etc.

It is best to try these features firsthand through practical
implementation to truly appreciate its potential. That's precisely what
we will do in the upcoming lessons – dive into the coding aspect!

"Hmm, alright. I'm willing to trust your insights on the new features of
Next.js and such. However, is it actually being used by people? Are
companies actively seeking professionals with Next.js expertise? Is
there a high demand for it in the industry?"

— Are you wondering the same?

Let the data speak for itself:

Introduction

In the past 30 days, Next.js has received significantly higher search

interest worldwide than React.js.

But hey, that’s just a Google trend. What about the industry? Are people

even creating websites using Next.js?

Sure, let’s take a look at “The Next.js Showcase” which shows different

companies using Next.js:

� Notio�

� Hul�

� Netflix Job�

� Nik�

� HBO Ma�

� Audibl�

� Typeform

� TE�

� Auth�

� Product Hun�

� Hyunda�

� Porsch�

� repl.i�

� Marvel

� Futuris�

� Material-U�

� Coco Col�

� Ferrar�

� Hashnod�

� Verge

Introduction

https://nextjs.org/showcase

And many more renowned names. This demonstrates the genuine

excitement and widespread adoption of Next.js!

Considering the rapid rate at which companies embrace Next.js, it

would be no surprise to witness a huge surge in demand for Next.js jobs

in the coming months, if not years.

Now is the perfect time to seize the opportunity and prepare for the

future job market by mastering Next.js.

With this book and the courses we have done and will continue to do,
you can be the next Next.js developer.

So, grab a cup of coffee, and let's get started on this exciting journey!

Introduction

Chapter 3

The Roadmap
The Roadmap is a concise guide to web development essentials. It

covers HTML for structuring web content, CSS for styling and layout, and

JavaScript for interactivity. Learners will grasp important concepts like

semantic tags, visual effects, variables, control flow, functions, and

manipulating the DOM.

This chapter equips beginners with the skills needed to create dynamic

and interactive web applications.

The Roadmap
Before we start exploring Next.js, reviewing or relearning some basic
concepts is a good idea to make learning easier. It all begins with
building a solid foundation through fundamentals.

Think of this roadmap as a summary of what you should know as a
foundation for learning Next.js. It's alright if you're unfamiliar with
advanced topics like integrating databases or implementing
authentication.

These points help you understand the main concepts without focusing
on specific coding details.

In Next.js, there are various approaches to implementing these
concepts. You have options like utilizing (one of the coolest
features), exploring popular market solutions like , or even building
everything from scratch.

NextAuth
Clerk

Similarly, when it comes to databases, you can choose between
different options such as SQL databases like , NoSQL databases
like , or even consider using as an ORM (Object-
Relational Mapping) manager.

Postgres
MongoDB Prisma

Whether or not you have coding experience is not the most important
factor here. What truly matters is understanding the underlying
concepts. The roadmap is designed to introduce you to these concepts
and familiarize you with the beneficial knowledge when aspiring to
become a Next.js Developer.

The Roadmap

https://next-auth.js.org/getting-started/introduction
https://clerk.com/
https://www.postgresql.org/
https://www.mongodb.com/
https://www.prisma.io/

Later in the next chapters, and with our branded courses, you’ll learn

how to do all the code stuff in Next.js. So don’t worry; you have our back!

Presenting the Roadmap,

These points help you understand the main concepts without focusing

on specific coding details.

1 Web Development Fundamentals

HTML - HyperText Markup Language

Basics

Understand the structure, elements, and attributes of HTML documents

� Structure

� Elements

<!DOCTYPE> <html> <head> <body>

� Heading <h1> to <h6>

� Paragraph <p>

� Lists

� Link <a>

� Image

� Input <input> <textarea>

� Button <button>

� Group Elements <div>

The Roadmap

� Semantics

Use elements like

� Forms

Learn to create forms, handling user input, perform form validations by

using form element and onSubmit event listener

etc. to enhance document structure of accessibility.

<header> <nav> <main> <section> <aside> <footer>

CSS — Cascading Style Sheets

Fundamentals

Understand the structure, elements, and attributes of HTML documents

� Structure

� Box Model

� Selectors

Understand how elements are styled using

padding margin border

Learn about different types of selectors to target and style

specific HTML elements. For example,

Type Class Id Child Sibling

The Roadmap

� Typography

� Colors and Backgrounds

Explore text-related properties like

font size weight alignment

Understand how to set different

colors gradients background images

Learn the various display values like

block inline inline-block

Explore how to position an element in different ways such as

relative absolute sticky fixed

Master the flexbox layout to create responsive website layouts

Dive into CSS grid layout for advanced two-dimensional layouts

Layout and Positioning

� Display

� Position

� Flexbox

� Grid

The Roadmap

Learn to create smooth transitions using different CSS properties like

delay timing duration property timing-function

Explore 2D and 3D transformations like

scaling rotating translating elements

Learn how to create animations using keyframes

Explore with box shadows and linear or radial gradients

Effects

� Transitions

Advanced (Plus)

� Learn how to use CSS processors like sass or frameworks like
tailwindcss for more powerful and efficient styling

� Transformations

� Animations

� Shadows and Gradients

The Roadmap

JavaScript

� Variables and Data Types

� Operators

� Control Flow

� Functions

� DOM Manipulation

Declaring variables and understanding different data types such

as string, number, boolean, null, undefined, object, array, etc.

Learn to use different operators such as arithmetic, comparison,

logical, and assignment to perform operations on data

Try & test conditional statements such as if else, switch and loops

such as for while to control program flow

Define and learn to create different functions, understand function

scope, and work with different parameters and return values

Knowing how to use JavaScript to change and interact with HTML

elements on a webpage is an important skill. It's like a building

block that we use in different ways with tools like React or Next.js in

the form of new APIs.

Remember when we showed you different "Hello World" examples

in vanilla JavaScript and React.js? The basic idea is the same, but

the code structure is a bit different in React.

The Roadmap

If you're uncertain about how to learn & create a website using HTML,

CSS, and JavaScript, you can immediately build an attractive Sushi

Website by simply following the right free course:

Build and Deploy a Sushi
Website using HTML & CSS

Watch and Code Now

2 Modern JavaScript

� Arrow Functions

� Destructuring

In JavaScript, there are different kinds of functions. One type that

you'll often come across is called the Arrow function. Many prefer

using arrow functions because they are shorter & easier to write.

A helpful concept that will come in handy when we have to extract

values from arrays and objects

If you take the time to understand the syntax and how arrow

functions work, it will help you write shorter and more

straightforward functions. This can make your code look cleaner

and easier to read.

� ES6 Features

The Roadmap

https://youtu.be/QRrPE9aj3wI

� Destructuring

� Spread Syntax

� Template Literals

� Modules

A helpful concept that will come in handy when we have to extract
values from arrays and objects

Allows to expand elements of an array or object into individual
elements

One of the widely used. Using the back sticks , we can
interpolate strings with placeholders & expressions

``

Learn how to import export code between files to organize the
code

� Asynchronous Programming

� Promises

� Async/Await

Gain an understanding of the concept of promises and why they
are necessary. Learn about resolving and rejecting promises and
utilizing and for handling asynchronous operations.then catch

Explore the usage of to write asynchronous code in a
more synchronous way. This convention is widely adopted as an
alternative to using and for handling promises.

async/await

then catch

The Roadmap

� Fetch API

� Axios (Plus)

Discover how to use the Fetch API in the browser to send HTTP
requests and handle the resulting responses.

Explore the popular third-party library, Axios, which simplifies the
process of making HTTP requests compared to the standard Fetch
API.

� Additional JavaScript Concepts

� Array Methods

� Error Handling

Familiarize yourself with different widely used array methods to
simplify the development process. For example,

One of the crucial part of web development is to catch and
display the errors properly. No user will like to see the complete
red screen with a text — “Error on line 35”. Not even us.

map

filter

reduce

slice

splice

forEach

includes

join

reverse

and few others

The Roadmap

Therefore, it is essential for every developer to cultivate the skill of

error handling. Familiarize yourself with the try-catch-finally block,

which enables you to capture errors and present them on the user

interface using user-friendly and easily understandable language.

� Foundations

� Bundlers and Compilers

A javascript runtime environment that allows us to run JavaScript

code outside of the browser.

A tool that manages third party packages. Using it, you can

download different packages needed inside you project like Axios

Bundlers like webpack or Parcel help combine our JavaScript files

and other assets into a single bundle

It’s needed to work with React or Next.js. Make sure to download it

Before we proceed learning the libraries and frameworks like

React.js and Next.js, we’ll need some kind of config to setup these

projects:

3 The Ecosystem

Node.js

NPM — Node Package Manager

Webpack

The Roadmap

� Version Control (Plus)

Learning a version control system like Git is highly valuable for
anyone on the path to becoming a developer.

GitHub - a web based platform to manage git repositories
in the cloud

Transpilers like Babel convert modern JavaScript code to a version
that works in all browsers

Git - version control system

Babel

From here, you’re efficiently learning Next.js. The same concepts
are as it is used in the Next.

4 React JS

� Components

Think in terms of components. Learn to break the code or the UI in
small manageable components for reusability & maintainability

There are two ways in which we can create a component i.e.,

� Class Componen�
� Function Component — Widely used

� Fundamentals

The Roadmap

Along with that, learn “What is JSX?” and the “Component
Lifecycle”.

� State and Props

� Events

� Conditional Rendering

State

Props

Learn how to create and manage state — A small store that holds
a particular data of the application

Learn how to handle user interactions, such as clicks and form
submissions, using event handlers.

Learn how to conditionally render components and render
dynamic list of data using the mapping techniques

Learn how to pass props (a piece of data) between components

JSX is syntax in React that allows you two write HTML
code. You won’t even feel like you’re using something
different. It looks like HTML but isn’t.

P.S., Don’t forget to learn about the special “Key” prop when rendering
the dynamic list with map method.

The Roadmap

� Hooks

� Router

� State Management

After learning how to create functional component, the next

challenge will be to understand how to use hooks.

Learn how to do client side routing by understanding concepts like

Understand different state management options in React such as

built-in state management — Context API

Hooks are special functions that allows us to manage state,

handle side effects and improve the efficiency. Few famous hooks

are,

� Hooks & Router

useState useEffect useRef useContext useCallback useMemo

Context API Redux Toolkit Zustland

Routes Route parameters Nested routes

React Router DOM is an independent package used to
handle the routing in React application

The Roadmap

� Style

� Forms

� HTTP Requests

Explore different approaches to styling React components,

including

CSS-in-JS libraries like

Learn to create form validation, handling form submission with or

without using third party libraries like,

Learn how to make requests using libraries like Axios or the built-in

Fetch API

Inline styles CSS modules Sass TailwindCSS Material UI

styled-components Emotion

Formik React Hook Form

� Forms & HTTP Requests

If you want to learn the fundamentals, styling and how to do HTTP

Requests in React, you can check out our FREE and highly popular Crash

Course on YouTube:

The Roadmap

React JS Full Course 2023 |
Build an App and Master
React in 1 Hour - YouTube

Watch and Code Now

If you want to enhance your skills in state management using tools like

Redux Toolkit, you can explore our professional-level course:

Ultimate ReactJS Course
with Redux Toolkit & Framer
Motion jsmastery.pro

Watch and Code Now

Also, if you want to create websites with a modern and attractive

design that will impress clients or potential employers, we suggest you

check out this series. It teaches you how to build React websites using

different styling techniques like TailwindCSS, Sass, and even pure CSS.

Build and Deploy a Fully
Responsive Modern UI/UX
Site in React JS - YouTube

Watch and Code Now

The Roadmap

https://youtu.be/b9eMGE7QtTk
https://www.jsmastery.pro/ultimate-react-course?discount=guide
https://youtu.be/LMagNcngvcU

Although it’s not a must to know how to do the backend to
become a Next.js developer, it’ll be nice to have the skill to
showcase the ability to do both and become a full-stack Next.js
developer.

You can use the following steps to learn backend development in
any technology stack you prefer. It can even be Python

5 Backend

� HTTP Protocol

� APIs and REST

Understand the HyperText Transfer Protocol and its fundamental
concepts

� Basics

APIs

REST

Learn what is Application Programming Interface (API)

Learn what is Representational State Transfer

� HTTP Methods

Explore methods, protocols and data formats that applications
can use to to exchange information

GET POST PUT DELETE PATCH

The Roadmap

� Status Code

� HTTP Headers

� Request and Response

� Resource URI

200

201

404

500

C

R

U

D

— ok

— Creating data (POST)

— created

— Reading data (GET)

— Not Found

— Updating data (PUT/PATCH)

— Internal server error

— Deleting data (DELETE)

� Understand the concept of CRUD operations

� CRUD

� Authentication and Authorization

Understand the difference between Authentication and

Authorization

The Roadmap

� User Sessions

� Relational Database

� NoSQL Database

� JWT — JSON Web Token

� Cookies

� Permissions and Roles

� Database

Familiarize yourself with databases in storing and managing

application data

� Production

� Development

� Staging

MySQL

MongoDB

PostgreSQL

Redis

� Environments

� Deployment

The Roadmap

� Hosting Platforms

� Advanced (plus)

Vercel Netlify Firebase

AWS AmplifyHeroku

Render

Railway

� CI/CD — Continuous Integration/Continuous Deployment

� Docker

Building backend applications can be challenging, but you can acquire
the necessary skills with sufficient practice. If you're interested in in-
depth project tutorials that specifically teach backend development
using Express and MongoDB—a highly popular stack—feel free to
explore some of our free courses available on YouTube:

Full Stack MERN Project -
Build and Deploy an App |
YouTube

Watch and Code Now

The Roadmap

https://youtu.be/ngc9gnGgUdA

Build and Deploy a Full
Stack MERN App With
CRUD, Auth, Charts - YT

Watch and Code Now

If you want to enhance your skills in state management using tools like
Redux Toolkit, you can explore our professional-level course:

Build & Deploy a Full Stack
MERN AI Image Generation
App | DALL-E Clone - YT

Watch and Code Now

And now, at last, we will dive into the Next.js roadmap. It may not be
necessary, as the content of this book is organized in a manner where
each chapter serves as a guiding milestone, and it’s the only resource
you need (alongside some Build and Deploy courses, of course) to
master Next.js!

But still, for you,

The Roadmap

https://youtu.be/k4lHXIzCEkM
https://youtu.be/EyIvuigqDoA

6 The Next.js

� Learn why we should use Next.js and its benefits

� Master the basic fundamentals of web development & React.js

� Familiarize yourself with the ecosystem

� Setup a next.js application using create next app

� Fundamentals

� Architecture

� File Based Routing

State Prop Components Module

Simple route Nested Dynamic Parallel Intercepting

Node NPM/Yarn NPX

Client Server

Understand the architecture of a Next.js application including

different files and directories i.e., app directory vs pages directory.

Learn how to create different types of routes in Next.js

Next, dive into the backbone of Next.js functionality by exploring

two distinct rendering processes:

The Roadmap

� Style

� Data Fetching

� SEO and Metadata

CSS modules Tailwind CSS Sass

SSG

SSR

ISR

CSR

— Static Site Generation

— Server Side Rendering

— Incremental Static Regeneration

— Client Side Rendering

Next.js has built-in support for CSS processors like Sass to CSS

modules. Try different types of styling with Next.js to find the one

that best fits your application:

You have the flexibility to choose between different types of

rendering and data fetching methods for your application. These

methods include:

It's important to understand each of these concepts in detail to

determine how and when to implement the most suitable

strategy for your application.

Learn how to use SEO strategies and leverage the use of Metadata

API of Next.js

Points to learn:

Static Metadata Dynamic Metadata File based Metadata

The Roadmap

� Handling Errors, loading states and much more

� Authentication

� API routes

NextAuth Clerk

Static Route Handlers Dynamic Route Handlers

The latest Next.js 13 app directory introduces various file

conventions that facilitate effective error handling, loading state

management, displaying not found pages, and even organizing

layouts in a more structured manner.

Learn,

Implementing custom email/password or social authentication

becomes hassle-free with NextAuth in Next.js. Few auth libraries

you can use with Next.js to speed up the development process:

Explore how to create API routes — the backend:

Create custom request handlers

error.js file loading.js file not-found.js file layout.js file

� Route Handlers

� Middleware

� Supported HTTP Methods

� NextResponse

� CORS and Headers

The Roadmap

� Database

MongoDB Postgres Prisma

Discover how to incorporate various types of databases into your
Next.js application by utilizing API routes.

If you're someone who prefers video content over reading, you'll find our
best and most up-to-date Crash Course on Next.js 13 on YouTube very
enjoyable. This course not only covers the fundamentals of Next.js but
also guides you in building a Full Stack project with authentication,
utilizing the latest features of Next.js 13:

If you have a keen interest in learning how to implement complex
filtering, pagination, and searching using server-side rendering (SSR)
with Next.js, then you should check out this resource:

Next.js 13 Full Course 2023 |
Build & Deploy a Full Stack
Application - YouTube

Watch and Code Now

Build and Deploy a Modern
Next.js 13 App | TypeScript,
Tailwind CSS - YouTube

Watch and Code Now

The Roadmap

https://youtu.be/wm5gMKuwSYk
https://youtu.be/pUNSHPyVryU

Keep in mind that real progress happens when you actively do coding.

So, grab coffee, find a quiet spot, and start coding to make things

happen.

The Roadmap

Chapter 4

How it works
In this chapter, we lay the foundation by understanding how the web

works before diving into Next.js code. We explore the traditional

approach of HTML, CSS, and JavaScript websites, where the server

sends complete files to the client for each page request.

We also introduce the React way, where the server sends a minimal

HTML file and a bundled JavaScript file, and React manipulates the

virtual DOM for efficient rendering. Finally, we discuss the Next.js way.

How it works
You might be itching to start with Next.js code, right?

Although writing code is important, we must first build our foundations.
It’ll not just help you in clearing interviews but will also help in making
sound decisions in your application.

If your why isn’t clear, you’ll have no idea what you’re doing, and you’ll
blame it on Next.js by saying that it’s an overrated piece of technology.
That will only showcase your lack of knowledge. It's a foolproof recipe to
amaze everyone with your impressive ignorance.

So, perfect your why and your how will come naturally.

Let’s time-travel a bit to see how things were used to work with
different technologies.

The vanilla — HTML, CSS, and JavaScript
Websites built using the web's fundamental elements, namely HTML,
CSS, and JavaScript, function differently compared to the latest
technologies.

When a user visits such a website, their browser (the client) sends a
request to the server (another computer where the site is hosted)
asking for the content to be displayed.

Traditionally, for each of these requests, the server responds by sending
three files i.e., the HTML, CSS, and JavaScript (only if any JavaScript code
is involved).

How it works

The client's browser receives these files and begins by analyzing the
HTML file. Then, it applies the styles from the CSS file and implements
any user interaction, such as event handlers or dynamic behavior,
specified in the JavaScript file on the webpage.

Although writing code is important, we must first build our foundations.
It’ll not just help you in clearing interviews but will also help in making
sound decisions in your application.

If your why isn’t clear, you’ll have no idea what you’re doing, and you’ll
blame it on Next.js by saying that it’s an overrated piece of technology.
That will only showcase your lack of knowledge. It's a foolproof recipe to
amaze everyone with your impressive ignorance.

So, perfect your why and your how will come naturally.

Let’s time-travel a bit to see how things were used to work with
different technologies.

The vanilla — HTML, CSS,
and JavaScript

Websites built using the web's fundamental elements, namely HTML,
CSS, and JavaScript, function differently compared to the latest
technologies.

When a user visits such a website, their browser (the client) sends a
request to the server (another computer where the site is hosted)
asking for the content to be displayed.

How it works

Request

Analyzing the HTML file

Applies the styles

Implements any user interaction

Traditionally, for each of these requests, the server responds by sending
three files i.e., the HTML, CSS, and JavaScript (only if any JavaScript code
is involved). The client's browser receives these files and begins by
analyzing the HTML file. Then, it applies the styles from the CSS file and
implements any user interaction, such as event handlers or dynamic
behavior, specified in the JavaScript file on the webpage.

The client will send additional requests to the server if the website has
multiple pages. In response, the server will send the three files
containing the respective content needed to render each page.

How it works

What’s the catch?

Processing

Most processing occurs on the client side, meaning the user's web

browser is responsible for rendering the HTML page and executing any

JavaScript code present.

However, if the website is complex and the user's device needs more

capabilities, it can strain the browser and create a burden for it to

handle.

Bandwidth

As the server sends complete files to the client for each page request, it

increases bandwidth usage. This becomes particularly significant when

dealing with complex websites containing numerous pages and video

and audio clips scattered throughout the site.

Load Time

The initial page load time may be longer when compared to the latest

technologies. This is due to the complete transfer of files for each

request. Only after the server has sent all the necessary files and the

browser has finished parsing everything will we be able to view the

website's content.

How it works

The React way
This is where React comes in. It improved the development lifecycle by

introducing components, virtual DOM concepts, and the client-server

mechanism.

When you access a React website, the client's browser sends a request

to the server for the webpage content. In response, the server sends a

minimal HTML file, which serves as the entry point for the entire

application, along with a bundled JavaScript file.

React initiates client-side rendering using this JavaScript file,

manipulating the virtual DOM. Instead of directly modifying the actual

DOM, React updates the virtual DOM and then applies only the

necessary changes to the real DOM, resulting in the desired page

display.

React utilizes its client-side routing library, React Router, to navigate to

different pages within the React application. This library enables

changing the route without a full server request, preventing page

refreshes.

React Router re-renders the relevant components based on the new

URL when a new route is triggered. If the new page requires fetching

data from the server, the corresponding components initiate requests

to retrieve the necessary data.

How it works

What’s the catch?

Complexity

Building a React application can present greater complexity than

traditional HTML, CSS, and JavaScript websites. It involves thinking in

components, managing state and props, and working with the virtual

DOM, which may require a learning curve for developers new to React.js.

Processing

Similar to the traditional approach, react primarily performs client-side

rendering. It heavily relies on JavaScript for initial rendering and

subsequent requests to update the user interface, which are all handled

on the client’s browser.

However, this reliance on client-side rendering can delay rendering and

interactivity, particularly on devices with slower processors and limited

resources.

SEO

Yes, if you recall, we previously touched upon a notable drawback of

React compared to Next.js in the Introduction chapter.

The issue is that search engine crawlers might need help fully

accessing the website's content since everything is handled through

JavaScript and only rendered on the client side. As a result, it impacts

the website’s visibility in search engine results

How it works

The Next.js Way - A blend of both
Knowing the benefits and limitations of both techniques, Vercel

developers allowed us to choose where to render the content, on the

client or server.

Typically, when a user visits a Next.js site, the client sends the request to

the server, which starts executing the React Components, generates

HTML, CSS, and JavaScript files, and sends back the fully rendered HTML

to the client as a response. This file includes initial content, fetched

data, and React component markup, making the client render it

immediately without waiting for JavaScript to download and execute.

But it doesn’t mean we don’t receive any JavaScript files. The server will

still send the JavaScript code as needed for the user interaction. From

here, Next.js takes over and performs client-side hydration

Have you ever encountered the issue of a hydration error where the

user interface doesn't match what was originally rendered on the

server?

Well, this is what it is about. Hydration is attaching JavaScript event

handlers and interactivity to the pre-rendered HTML. And when the

placeholders of React components i.e., div, form, span, don’t match

what’s being rendered on the client side, you see that error.

This is what it is — The hot topic of web development i.e., SSR.  
Server Side Rendering!

How it works

For subsequent requests, you have full control over where to render
your page content i.e., either on the server side (SSR) or the client side
(CSR).

In the following chapters, we’ll talk in-depth about different types of
server-side rendering along with client-side rendering and when and
where to render what.

How it works

Chapter 5

Create a Next.js
Application
In this chapter, we lay the foundation by understanding how the web

works before diving into Next.js code. We explore the traditional

approach of HTML, CSS, and JavaScript websites, where the server

sends complete files to the client for each page request.

We also introduce the React way, where the server sends a minimal

HTML file and a bundled JavaScript file, and React manipulates the

virtual DOM for efficient rendering. Finally, we discuss the Next.js way.

Create a Next.js Application
By now, you should fully understand how the websites load. Now it’s
time to learn how to create websites using Next.js.

Setting up a Next.js application can be done in various ways. However,
before we dive into that, there are a few things we need to have in place
to get started with Next.js. The first requirement is having Node.js 16.8 or
a more recent version. It's worth noting that there is a common
misconception that Node.js is a new programming language.

In reality, it’s a JavaScript runtime that enables the execution of
JavaScript code outside of a web browser.

If you haven't installed Node.js before, you can visit this link and start
downloading it. The website will give you two options based on your
operating system: LTS and Current. The LTS (Long Term Support) version
is the most stable, while the Current version is like a "Work in Progress"
that adds new features but may have some bugs.

So, did you download it?

To determine the version you're using and check if you've downloaded
Node.js, you can execute this command in your terminal or Command
Prompt to verify:

node - v

Create a Next.js Application

https://nodejs.org/en

node -v

18.16.1

Next, we require a Code Editor. Considering that Visual Studio Code
(VSCode) is an exceptional editor, we suggest using it. You can visit
link, and depending on your operating system (OS), you will find the
appropriate download link. The download process and installation
process is as straightforward as it gets.

this

Create a Next.js Application

https://code.visualstudio.com/

After downloading Node.js and VSCode, let's set up your first Next.js

application.

Go to the desired location where you want to create your project. It can

be any location, but it's advisable to maintain an organized structure.

Create a new folder inside that location and name it "NextEbook." If you

prefer a different name, feel free to choose one. This folder will hold all

the code we will cover in this ebook.

Now, let's proceed with the following steps to open the folder we just

created in our chosen code editor, which is VSCode:

�� Launch VSCode�

�� Click on the "File" option in the top menu bar�

�� From the dropdown menu, choose "Open Folder.�

�� Browse to the location where you created the "NextEbook" folder�

�� Select the "NextEbook" folder�

�� Click on the "Open" button.

Create a Next.js Application

Following these steps, you can view your "NextEbook" folder in VSCode.

VSCode provides its own built-in terminal, eliminating the need for

developers to open the OS Terminal or Command Prompt separately.

With the inline terminal in VSCode, we can perform all necessary tasks

within the application.

To open the terminal, press ctrl + `(backtick) or click on the

"Terminal" option in the top menu bar. From the dropdown menu, select

"New Terminal." The terminal window will appear as follows:

For the final, let’s now create our Next.js application. There are two

options:

� Automatic Installatio�

� Manual Installation

Create a Next.js Application

As the name implies, manual installation involves obtaining and
configuring packages individually and organizing the initial file and
folder structure along with some code. We’ll have to do everything on
our own.

On the other hand, the alternative approach aims to accelerate the
development process by allowing us to create the application with our
preferred choices. Depending on our preferences, such as using
TypeScript or not, incorporating styling libraries like Tailwind CSS, or
opting for other options, we can set up the complete project with just
one click.

Being widely used and an easy installation choice, we can create a
next.js project by running a Zero Dependency CLI (Command Line
Interface) tool — create-next-app. You can visit this link if you want to
know about this in detail. Inside, you’ll see how the create-next-app has
been created with the templates, including with/without JavaScript,
Tailwind CSS, etc.

Don’t worry; you don’t need to download create-next-app as another
global package. Thanks to npx!

When you installed Node.js, you also got two other useful tools:

NPM NPX

NPM, which stands for Node Package Manager, allows us to manage
and download various packages (collections of code) that we need to
run our application. For example, packages like Axios for making HTTP
requests or Redux Toolkit for state management.

Create a Next.js Application

https://github.com/vercel/next.js/tree/canary/packages/create-next-app

On the other hand, NPX, short for Node Package Runner, is a command-

line tool. It lets us execute packages without installing them globally on

our system. It's important to note that npx is used to run command-line

tools and execute commands from packages, but it doesn't handle the

installation of packages. That responsibility falls to npm, which takes

care of package installation.

Let's move on from the theoretical discussion and proceed with the

command that will automatically install the necessary packages for

running a Next.js application.

npx create-next-app@latest

As soon as you press enter, it will prompt you to confirm whether it can

download the required packages. Please select "yes" to proceed with

the installation.

During the installation process, we will encounter a series of prompts

individually. These prompts allow you to choose the specific features

and configurations we desire for our Next.js application.

√
√
√
√
√
√
√

 What is your project named?
 Would you like to use TypeScript with this project?
 Would you like to use ESLint with this project?
 Would you like to use Tailwind CSS with this project?
 Would you like to use src/ directory with this project?
 Use App Router (recommended)?
 Would you like to customize the default import alias?

introduction

No

No

No

No

Yes

No

Let's choose not to include TypeScript, ESLint, and Tailwind CSS. In the

upcoming chapters, we will explore these options in detail.

Create a Next.js Application

If you see the installation process carefully, you’ll see “Using npm.”
npx is used solely to execute commands from packages, while npm
handles the installation of those packages.

And there you have it! The Next.js application has been successfully
installed

Now, let's explore what's inside. Click on the "introduction" folder or the
name you chose for your project. Inside, you will find several files and
folders.

App

It’s the root of the application, where we'll create various client
(frontend) routes and potentially write backend code. Initially, you'll find
some starter files in this location, including:

Create a Next.js Application

favicon.ico

It represents the website's favicon displayed in the browser's tab. By

default, the favicon will be the Vercel icon. You can replace it with the

one you like.

globals.css

This file holds the CSS code for the application. It is a global file where

you can define CSS variables, import fonts, or perform other CSS

initialization tasks.

You can keep the file, rename it, or even move it to a different location. It

doesn't matter. However, if you make any changes to this file, you must

update any other parts of the application that rely on it.

Create a Next.js Application

global.css

: {

: ;

: ;

: , , , ' ',

' ',' ', ' ', ' ',
' ',' ', ' ', ;

: , , ;

: , , ;

: , , ;

: (

from at ,

,

,

,

,

);

: (

(, , ,),

(, , ,)

);............

root
--max-width
--border-radius
--font-mono

 monospace

--foreground-rgb
--background-start-rgb
--background-end-rgb

--primary-glow

16abff33
0885ff33
54d6ff33
0071ff33

transparent

--secondary-glow

1100px
12px

0 0 0
214 219 220

255 255 255

180deg 50% 50%
0deg
55deg
120deg
160deg

360deg

255 255 255 1
255 255 255 0

ui-monospace Menlo Monaco Cascadia Mono
Segoe UI Mono Roboto Mono Oxygen Mono Ubuntu Monospace
Source Code Pro Fira Mono Droid Sans Mono

conic-gradient

radial-gradient
rgba
rgba

layout.js

It’s the main entry point of the application. The root. The parent. The
layout. Whatever you prefer to call it.

If you write anything in there, it’ll appear on each & every client
(frontend) route. It’s universal.

If you need to import fonts, add metadata, wrap the application with
Redux, or show a Navbar, this is the place to do it. All these tasks can be
performed within this file.

Create a Next.js Application

page.js

It’s an alias of the home route i.e., “/”. It's important not to confuse this

file with layout.js. Whatever you write inside page.js will be displayed

only on the "/" route, while anything inside layout.js will appear across all

routes, including the home route i.e., “/”.

In short, layout.js is the parent of page.js, providing a common layout for

all pages.

page.module.css

This CSS file is specifically designed to style a particular page

component or module. The naming convention .module.css indicates

that the CSS rules in this file are scoped to a specific component. In this

case, it corresponds to the page.js component.

If you closely examine the code, you will notice the presence of the

following:

import from ' styles ./page.module.css`

inside the page.js file.

Node Modules

Well, it’s the backbone!

The node_modules directory is a storage location for all the

dependencies or packages required to run a project. Whenever we

install packages using npm, the corresponding code for those

packages is placed inside this directory.

Create a Next.js Application

For example, if we install Axios, a folder named axios will be created
within the node_modules folder. If you've been following closely, you
may have noticed that Next.js is built on top of React. Therefore, you can
explore the node_modules folder to find the react folder, which contains
the code for React itself.

In addition to React, you'll come across several other folders such as
next (which enables Next.js-specific features), react-dom, postcss,
styled-jsx, and more. Each of these folders contains numerous files
and lines of code essential for running our Next.js application.

No need to worry, though. You don't have to interact with or visit this
directory in the future (unless something terrible happens). npm
automatically manages the node_modules folder when we install or
uninstall node packages.

Public

It’s a special folder allowing us to include static assets like images or
files like fonts, videos, etc.

The content inside this folder is automatically optimized and available
throughout the application. Thus it’s advisable to put any PNGs, JPEGs,
or SVGs we need inside this folder.

.gitignore

The .gitignore is a special text file that tells Git, the version control
system, to exclude certain files and directories from being tracked.

One common entry in the .gitignore file is node_modules.

Create a Next.js Application

This is because the node_modules directory contains many files and

folders generated when installing dependencies for a Node.js project.

Including these files in version control would create unnecessary clutter

and increase the size of the repository.

As said by the Creator of Node.js — Ryan Dahl

We would certainly not want to track the “Heaviest Object” in the

universe!

jsconfig.json

Remember the prompt that appeared when we ran the Next.js CLI tool?

It asked us if we wanted to customize the default import alias, and we

chose "No".

Create a Next.js Application

√ Would you like to customize the default import alias? No

Well, the jsconfig.json file is related to that question. It act as a

configuration file where we can set various options and settings for our

project. One of the things we can configure is the import behavior.

By default, when we want to import code from one file into another, we

use relative paths like this:

import from ' something ../../components`

This is the correct, but sometimes long and complex, relative path.

In larger projects or projects with complex directory structures,

manually specifying relative paths for each import can become tedious

and prone to errors.

However, by configuring the compilerOptions in the jsconfig.json

file, we can inform the compiler about a specific import path structure

that we want to use.

If we take a look at the content of the jsconfig.json file, we have:

{

 " " {

 " ": {

 " ": " "
 }

 }

}

compilerOptions

./*

:
paths
@/* []

Create a Next.js Application

In this configuration, we have defined path aliases using . This

means that now we can do the following:

@/*

import from ' something @/components`

i.e., using @/* for any files and folders located in this location ./* i.e., the

root!

Feel free to customize the alias to your preference. You can change @/*

to @* or even #/* — the choice is yours!

package-lock.json

Have you ever think of this as an unwanted file?

Well, let me tell you, it's actually quite important. This file, called

package-lock.json, is automatically created when we install or make

changes to packages. It serves as a lock file, carefully keeping track of

the specific versions of all the installed packages and their

dependencies.

Let's imagine a scenario: You're working on a Next.js project. After

completing your work, you share the project code with your manager,

but you omit the package-lock.json file, thinking it's not essential.

Now, your manager starts downloading the packages listed in the

package.json file. The package manager, npm, installs the specified

packages and their dependencies (i.e., the folder and files we have

seen inside the node_modules folder).

Create a Next.js Application

However, if any dependencies release a new version, the package

manager will eagerly download it. And unfortunately, if this new version

may contain unresolved bugs or compatibility issues, it can cause your

application to misbehave.

As a result, your manager may become frustrated, saying, "It doesn't

work on my machine ," while you feel helpless, responding with a

disheartened "It works on my machine ."

Know the importance and always share your package-lock.json file

package.json

Think of this as an info card that tells about you — who you are, where

you are from, etc. but with more complete details.

Along with containing the information regarding the name of the

project, and its version, it tells us the dependencies and dev

dependencies required to run this project

dependencies

List of the packages that are necessary for the project to run the

production environment

devDependencies

List of packages that are only needed during the development process.

For example, linting packages like eslint.

Whenever we install a package, whether a dependency or a dev

dependency, npm automatically records the package name and its

corresponding version in the respective section of the package.json file.

Create a Next.js Application

This way, the package.json file records all the packages required for

the project, making it easier to manage and reproduce the

development and production environments accurately.

Other than that, we can see another part i.e., “scripts”. It contains

executable commands or scripts using npm. We can completely

customize it. Through these commands/scripts, we run tests, build a

project, start a development server, or deploy the application.

Last but not least,

README.md

It’s a like a manual or guidebook for your project — a text file where we

can write down important information about our project, such as how to

install it, what it does, and how others can contribute to it.

Having a good README helps people understand what our project is all

about and how they can use it or get involved. It's like giving them

directions or instructions on how to make the most of our project.

Now, let's finally run our application. We need to execute one of the

commands from the "scripts" section we just mentioned, specifically the

"dev" command.

Before proceeding, ensure the terminal's path is set to the correct

location. Since we created a subfolder called "introduction" inside the

"NextEbook" folder, we need to navigate into it. To do that, enter the

following command in the open terminal:

cd introduction

Create a Next.js Application

The "cd" command, which stands for "change directory," will navigate us

inside the "introduction" folder.

Now run,

npm run dev

This command will start a local machine's development server on port

3000. To see the application in action, open your preferred web browser

and type the URL: . If you have followed all the

previous steps correctly, you should be able to see the application

running as expected:

http://localhost:3000

Create Next App

http://localhost:3000

Phew, a lot of explaining just to cover the initial file and folder structure.

But it’s of no use if we don’t take any actions. Let’s change few things

from the repo to see how it works.

Create a Next.js Application

http://localhost:3000/

Open the page.js file and delete all the existing code. We'll start fresh

by creating the Home component.

export default () {

return
< >

< > </ >

</ >

}

 Hello World

function Home
 (

 main

p p
man

)

After making the changes, save the file and return to your browser. If

you visit the localhost again, you should see the updated content of

"Hello World " without manually refreshing the page. This is possible

because of the feature of Next.js, which automatically

reflects the changes in real time as we edit the code.

Fast Refresh

Now, open the layout.js file and add text inside the body tag:

import ' ';

import { } from ' ';

= { : ' ' } ;

export = {

: ' ',

: ' ',

};

export default ({ }) {

return
< =" ">

< ={ . }>

< > </ >

{ }

</ >

</ >

;

}

 Inter

 inter ([])

 metadata

 children

 inter className
 Hello, I'm Groot
 children

./globals.css
next/font/google

latin

Create Next App
Generated by create next app

en

subsets

title
description

 (

 html

body
p p

body
html

)

const

const

function

lang
className

Inter

RootLayout

Create a Next.js Application

https://nextjs.org/docs/architecture/fast-refresh

Take a moment to ponder: Where will this text appear? Will it be

displayed before the "Hello World " or after it? Or perhaps it won't be

displayed at all since we are on the home route, which is "/".

3, 2, 1... finished thinking?

To find the answer to your question, visit the browser. And you're right!

The text will be displayed before the "Hello World ".

Create Next App

http://localhost:3000

Why? Because layout.js is parent or root of the application.

But why before the “Hello World ”? Because we are rendering the

children components of layout.js after the text "Hello, I'm Groot ".

< ={ . }>

< > </ >

{ }

</ >

body
p p

body

className inter className
 Hello, I'm Groot
 children

Create a Next.js Application

Reverse the order, and see the magic, i.e.:

< ={ . }>

 { }

< > </ >

</ >

body

p p
body

className inter className
children

 Hello, I'm Groot

The children prop is passed by Next.js to the RootLayout component in

layout.js. It contains all the child components or route components of

the application, starting from the home route and extending to any

other routes that we may create.

// children is passed as a prop by Next.js

/* Contains the route components, i.e., home route */

export default ({ }) {

return

< =" ">

< ={ . }>

< > </ >

{ }

{ }

</ >

</ >

}

 children

 inter className
 Hello, I'm Groot

 children

function

lang
className

RootLayout
 (

 html

body
p p

body
html

)

en

Clear enough?

Amazing! Before you rush to start the next chapter, I have a few tasks for

you to complete:

Create a Next.js Application

Tasks
 Comment down the {children} inside the RootLayout and see if you

can still see the “Hello World ”

import ' '

import { } from ' '

= { : ' ' }

export = {

: ' ',

: ' ',

}

export default ({ }) {

return

< =" ">

< ={ . }>

< > </ >

{ }

{ }

</ >

</ >

}

 Inter

 inter ([])

 metadata

 children

 inter className
 Hello, I'm Groot

./globals.css
next/font/google

latin

Create Next App
Generated by create next app

en

subsets

title
description

 (

 html

body
p p

body
html

)

const

const

function

lang
className

Inter

RootLayout
// children is passed as a prop by Next.js

/* Contains the route components i.e., home route */
/* {children} */

Explain the purpose of Node.js in the context of Next.js and web
development.

Explain the purpose and usage of the create-next-app CLI tool
and why we use npx with it.

What is the role of the node_modules directory in a Next.js
project? Why is it recommended not to include it in version
control?

Create a Next.js Application

Chapter 6

Client Vs. Server
In this chapter, we lay the foundation by understanding how the web

works before diving into Next.js code. We explore the traditional

approach of HTML, CSS, and JavaScript websites, where the server

sends complete files to the client for each page request.

We also introduce the React way, where the server sends a minimal

HTML file and a bundled JavaScript file, and React manipulates the

virtual DOM for efficient rendering. Finally, we discuss the Next.js way.

Client Vs. Server
So far, we understand that Next.js does a mix of server-side and client-

side rendering to get the best of both worlds. But we need to find out

which parts of the application are rendered on the server side. Can we

choose what to render in each environment?

And if so, how can we do that?

Before we answer these questions, let's go back and remind ourselves

what we mean by client and server. What do these terms actually

mean?

Client

The client refers to the device you are currently using, such as your

smartphone or computer. The device sends requests to the server and

displays the interface that we can interact with.

Server

The server is essentially just a computer device, but it is equipped with

strong configurations and remains operational continuously. It is where

all the code for our application is stored. When the client, our device,

sends a request, the server performs the necessary computations and

sends back the required outcome.

In previous versions of Next.js, specifically versions before 13, we faced a

limitation where server-side rendering was restricted to individual

pages. This meant that only the route pages like "/", "/about", "/projects",

and so on could be rendered on the server side.

Client Vs. Server

This limitation led to challenges such as prop drilling and duplication of
API calls when passing data to lower-level components.

I recommend reading this article to gain a deeper understanding of the
differences between the pages directory and the app directory in Next.js
and how they address these limitations. It provides detailed insights
into the topic:

Less code, better UX:
Fetching data faster with
the Next.js 13 App Router

Link to blog

And that, my friends, is where the app directory comes into action. It not
only introduced many features but also brought about a revolutionary
change, i.e., — Component level Server Side Rendering.

What does that mean?

It means that now we have the ability to choose where we want to
render specific components or a section of code.

For instance, let's consider a component called Navbar.jsx. With this
new capability, we can decide whether we want to render it on the
server side or the client side (in the user's browser).

And that's how we end up with two types of components: Client
Components and Server Components.

Client Vs. Server

https://vercel.com/blog/nextjs-app-router-data-fetching

What are these?

Simply put, both are React components, but the difference lies in where

they are rendered.

Client Component - A react component that runs/renders on the user’s

device, such as a web browser or mobile app.

Server Component - A react component that runs/renders on the

server, i.e., the infra or place where we’ll deploy our application

But why would we want to render such a small component on the
server side?

Well, think about it!

By strategically deciding to render certain components on the server

side, we save users' browsers from doing extra work with JavaScript to

show those components. Instead, we get the initial HTML code for those

components, which the browser can display immediately. This reduces

the size of the JavaScript bundle, making the initial page load faster.

And as discussed above, we’ll overcome our limitations with the pages

directory. Rather than fetching and passing data to components

separately, we can fetch the data directly within the component,

turning it into a server component.

Overall, we’ll have these benefits if we choose to do server-side

rendering:

Smaller JavaScript bundle size: The size of the JavaScript code that

needs to be downloaded by the browser is reduced.

Client Vs. Server

Enhanced SEO (Search Engine Optimization: Server-side rendering
helps improve search engine visibility and indexing of your website's
content. (remember?)

Faster initial page load for better accessibility and user experience:
Users can see the content more quickly, leading to a smoother
browsing experience.

Efficient utilization of server resources: By fetching data closer to the
server, the time required to retrieve data is reduced, resulting in
improved performance.

Okay, but when to decide what to render where?

As their name suggests, where to render each component depends on
what the component does.

If a component needs the user to interact with it, such as clicking
buttons, entering information in input fields, triggering events, or using
react hooks, then it should be a client component. These interactions
rely on the capabilities of the user's web browser, so they need to be
rendered on the client side.

On the other hand, if a component doesn't require any user interaction
or involves tasks like fetching data from a server, displaying static
content, or performing server-side computations, it can be a server
component. These components can be rendered on the server without
specific browser features.

Ask yourself:

Client Vs. Server

Does the component require user interactivity?

Yes — Client Component No — Server Component

To simplify things, the Next.js documentation provides a helpful table
that guides you on where to render each component.

What do you need to do? Server

Component

Client

Component

Fetch data.

Access backend resources (directly)

Keep sensitive information on the server (access
tokens, API keys, etc)

Keep large dependencies on the server / Reduce
client-side JavaScript

Add interactivity and event listeners (onClick(),
onChange(), etc)

Use State and Lifecycle Effects (useState(),
useReducer(), useEffect(), etc)

Use browser-only APIs

Use custom hooks that depend on state, effects, or
browser-only APIs

Use React Class components

Client Vs. Server

Impressive! You've just discovered one of the most significant features

of the modern era. Take a well-deserved break!

Ready for more?

Another groundbreaking aspect of Next.js 13's app directory is that all

components are automatically considered server components by

default. That's right; every component is treated as a server component

unless specified otherwise.

So how do we differentiate it from the client components?

Well, it's as simple as writing "use client" at the top of the component

file. It's a straightforward and slick way to indicate that the component

should be treated as a client component.

That's enough theory for now. Let's dive into coding

To get started, follow the steps outlined in the previous section to

quickly set up a new Next.js project within the same NextEbook folder.

Before proceeding, ensure that the terminal's path points to the

NextEbook folder and not the previously created introduction folder.

To navigate out of the introduction folder, you can run the following

command:

cd ..

Now, execute the create-next-app command. In this example, I'll be

using the name client-server for the new folder, but feel free to

choose any name you prefer.

Client Vs. Server

Once the installation is complete, use the cd command to navigate into

the client-server folder and start the application.

Now go to the app folder, then to the page.js file, and delete all other

content except for the main and h2 tags:

app/page.js

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

</ >

}

 styles

console

styles main
 Welcome

./page.module.css

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2
main

)

If you prefer, you can delete everything else from the page.module.css

file and keep the styles only for the main tag of HTML.

app/page.module.css

. {

: ;

: ;

: ;

: ;

: ;

}

main
 flex
 column
 center

display
flex-direction
align-items
padding
min-height

6rem
100vh

After adding a console log in our page.js file, let's open our web browser

to see if it appears there:

Client Vs. Server

Once the installation is complete, use the cd command to navigate into

the client-server folder and start the application.

Create Next App

http://localhost:3000

Hmm, “Where do I render?” is not there. How on Earth?

Indeed, you are correct. As previously discussed, all these components

will be Server Components by default!

So where do we see the console statements if not in the browser

console? You know that, right?

The terminal! Let's return to our terminal and check if the mentioned log

text is present there:

Client Vs. Server

And there we go, the log is there

Now let’s create two more components for each Client and Server.

Inside the root of the folder, i.e., outside of the app folder, create a new

folder and name it components. Create two new files inside it,

ExampleClient.jsx and ExampleServer.jsx.

components/ExampleClient.jsx

" ";

= () {

. " " ;

return
< >

< > </ >

</ >

;

};

export default ;

use client

I'm Client Component :)
const => ExampleClient

console

 This an example client component

 ExampleClient

 ()

 (

 div

p p
div

)

log

Client Vs. Server

And the small ExampleServer component as

components/ExampleServer.jsx

const => ExampleServer
console

 This is an example server component

 ExampleServer

= () {

. " " ;

return
< >

< > </ >

</ >

;

};

export default ;

 ()

 (

 div

p p
div

)

log I'm Server Component :)

Now, first import & use the ExampleClient component inside the app/

page.js file:

app/page.js

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

</ >

}

 styles
 ExampleClient

console

styles main
 Welcome

./page.module.css
@/components/ExampleClient

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient

Client Vs. Server

Perfect. Let’s check where we see which console log

First browser,

Create Next App

http://localhost:3000

Okay, that’s right, right? We explicitly said Next.js to render

ExampleClient.jsx as Client Component. Fair enough!

Going back to the Terminal, we see…

Client Vs. Server

Both of them, why?

This is because Next.js performs pre-rendering certain content before
sending it back to the client.

So basically, two things happen:

� Server Components are guaranteed to be only rendered on the
serve�

� On the other hand, client components are primarily rendered on the
client side.

However, Next.js also pre-renders them on the server to ensure a
smooth user experience and improve search engine optimization (SEO).

Next.js, by default, performs static rendering, which means it pre-
renders the necessary content on the server before sending it to the
client. This pre-rendering process includes server and client
components that can be pre-rendered without compromising
functionality.

The server Component is the latest React.js Feature. Next.js has
simply used it over what they had, making the setup easy.

Let’s play around with these components a little more. Now, import the
ExampleServer component inside the app/page.js file

Client Vs. Server

app/page.js

import from ' '

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

< />

</ >

}

 styles
 ExampleClient
 ExampleServer

console

styles main
 Welcome

./page.module.css
@/components/ExampleClient
@/components/ExampleServer

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient
ExampleServer

And now, if we visit the browser, along with showing both client-server

component text on the website, it’ll only show the “I'm Client Component

:)” log inside the browser’s console:

Create Next App

http://localhost:3000

Client Vs. Server

Whereas the terminal will show all the three console logs

All good!

For the final play, let’s remove the ExampleServer from app/page.js

and add it inside the components/ExampleClient.js

app/page.js

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

</ >

}

 styles
 ExampleClient

console

styles main
 Welcome

./page.module.css
@/components/ExampleClient

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient

Client Vs. Server

And the ExampleClient will look like this:

components/ExampleClient.jsx

" ";

import from " ";

= () {

. " " ;

return
<>

< >

< > </ >

</ >

< />

</>

;

};

export default ;

use client

./ExampleServer

I'm Client Component :)

 ExampleServer

 ExampleClient
console

 This an example client component

 ExampleClient

const =>
 ()

 (

div
p p

div

)

log

ExampleServer

Hit save and see the result in both the Terminal and Browser console.

First, let’s see what the terminal shows:

Client Vs. Server

As expected, we see all three console logs due to the pre-rendering of

Next.js and the server feature.

But something doesn’t look good in the Browser console…

Create Next App

http://localhost:3000

Why is the server component log appearing here? Wasn’t it supposed

to be on the server side only?

Well, in Next.js, there is a pattern at play. When we use "use client" in a

file, all the other modules imported into that file, including child server

components, are treated as part of the client module.

Consider "use client" as a dividing line between the server and client

code. Once you set this boundary, everything inside it becomes client

code.

Understood? If not, there is no need to worry.

Client Vs. Server

Just remember: Do not include server components inside the client

components.

And in case you encounter such a scenario, we have a solution. We'll

discuss it in detail in its dedicated section, where we'll dive into the

rendering process of client and server components. Additionally, we will

share some valuable tips and tricks on creating different types of

components depending on real-world examples.

Before we dive into yet another feature of Next.js, take some time out to

work on the below tasks to solidify your learning so far:

Tasks
 Add “use client” inside the app/page.js file and see where the

console logs are appearing:

app/page.js

" "

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

</ >

}

use client

./page.module.css
@/components/ExampleClient

Where do I render?

 styles
 ExampleClient

console

styles main
 Welcome

function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient

Client Vs. Server

What are the different types of components in Nex.js, and
explain their difference?

What are the benefits of server-side rendering?

What are the latest features of the app directory regarding the
client/server rendering?

Client Vs. Server

Is this the END? Absolutely not!

We have an abundance of additional chapters awaiting you. Starting

from routing, rendering, data fetching, backend API routes, database,

typescript, and even extending to testing, best practices, and Next.js tips

and tricks. The ebook covers it all.

We labeled it a "must-have" book for a reason

We're just scratching the surface. Stay tuned for the next update as we

release more chapters that unlock the full potential of Next.js 13.

Give yourself a pat on the back for completing all the chapters thus far.

We would greatly appreciate hearing your suggestions or feedback.

Feel free to provide your honest input through this .link

With your feedback and collaboration, we will bring you the best version

of Next.js in the coming weeks. Thank you!

The End

https://www.trustpilot.com/review/jsmastery.pro

