

We enable developers to
build amazing things

Authors
Lydia and Addy started work on "Learning Patterns" to bring a modern
perspective to JavaScript design, rendering and performance patterns. 

 Lydia Hallie
Lydia Hallie is a full-time software engineering consultant
and educator that primarily works with JavaScript, React,
Node, GraphQL, and serverless technologies. She also
spends her time mentoring and doing in-person training
sessions.

Addy Osmani
Addy Osmani is an engineering manager working on
Google Chrome. He leads up teams focused on making the
web fast. Some of the team’s projects include Lighthouse,
PageSpeed Insights, Aurora - working with React/Next.js/

Angular/Vue, contributions to Chrome DevTools and others.

The humans behind patterns.dev

 
 
 
License 
 
The Patterns.dev book is shared under a Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) license. You may remix,
transform, and build upon the material. You must give appropriate credit,
provide a link to the license, and indicate if changes were made. You may do
so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

Lydia Hallie Addy Osmani Josh W. Comeau
Co-creator & Writer Co-creator & Writer Whimsical UX

Twitter · GitHub · LinkedIn Twitter · GitHub · LinkedIn Twitter · GitHub · LinkedIn

Anton Karlovskiy Leena Sohoni-Kasture Nadia Snopek
Software Engineer Writer & Editing Illustrator

Twitter · GitHub · LinkedIn Instagram · Behance

https://twitter.com/lydiahallie
https://github.com/lydiahallie
https://www.linkedin.com/in/lydia-hallie/
https://www.patterns.dev/t/twitter.com/addyosmani
https://github.com/addyosmani
https://www.linkedin.com/in/osmani/
https://twitter.com/JoshWComeau
https://github.com/joshwcomeau
https://www.linkedin.com/in/joshwcomeau/?originalSubdomain=ca
https://twitter.com/antonkarlovskiy
https://github.com/anton-karlovskiy
https://www.linkedin.com/in/anton-karlovskiy/?originalSubdomain=ru
https://www.instagram.com/nadia.illustrations/
https://www.behance.net/nadia_snopek

Design patterns are a fundamental part of software development, as they
provide typical solutions to commonly recurring problems in software design.
Rather than providing specific pieces of software, design patterns are merely
concepts that can be used to handle recurring themes in an optimized way.

Over the past couple of years, the web development ecosystem has changed
rapidly. Whereas some well-known design patterns may simply not be as
valuable as they used to be, others have evolved to solve modern problems
with the latest technologies.

Facebook's JavaScript library React has gained massive traction in the past 5
years, and is currently the most frequently downloaded framework on
NPM compared to competing JavaScript libraries such
as Angular, Vue, Ember and Svelte. Due to the popularity of React, design
patterns have been modified, optimized, and new ones have been created in
order to provide value in the current modern web development ecosystem.
The latest version of React introduced a new feature called Hooks, which

https://www.npmtrends.com/@angular/core-vs-angular-vs-react-vs-vue-vs-ember-source-vs-svelte
https://www.npmtrends.com/@angular/core-vs-angular-vs-react-vs-vue-vs-ember-source-vs-svelte
https://angular.io/docs
https://vuejs.org/v2/guide/
https://api.emberjs.com/ember/release
https://svelte.dev/docs
https://www.patterns.dev/posts/hooks

plays a very important role in your application design and can replace many
traditional design patterns.

Modern web development involves lots of different kinds of patterns. This
project covers the implementation, benefits and pitfalls of common design
patterns using ES2015+, React-specific design patterns and their possible
modification and implementation using React Hooks, and many more patterns
and optimizations that can help improve your modern web app!

Overview of React.js
A UI library for building reusable user interface components

Over the years, there has been an increased demand for straight-forward
ways to compose user-interfaces using JavaScript. React, also referred to as
React.js, is an open-source JavaScript library designed by Facebook, used for
building user interfaces or UI components.

React is of course not the only UI library out
there. Preact, Vue, Angular, Svelte, Lit and many others are also great for
composing interfaces from reusable elements. Given React's popularity, it's
worth walking through how it works given we will be using it to walk through
some of the design, rendering and performance patterns in this guide.

When front-end developers talk about code, it's most often in the context of
designing interfaces for the web. And the way we think of interface
composition is in elements, like buttons, lists, navigation, and the likes. React
provides an optimized and simplified way of expressing interfaces in these
elements. It also helps build complex and tricky interfaces by organizing your
interface into three key concepts— components, props, and state.

Because React is composition-focused, it can, perfectly map to the elements
of your design system. So, in essence, designing for React actually rewards
you for thinking in a modular way. It allows you to design individual
components before putting together a page or view, so you fully understand
each component's scope and purpose—a process referred to
as componentization.

https://reactjs.org/
https://preactjs.com/
https://vuejs.org/
https://angular.io/
https://svelte.dev/
https://lit.dev/

Terminology we will use:

• React / React.js / ReactJS - React library, created by Facebook in 2013

• ReactDOM - The package for DOM and server rendering

• JSX - Syntax extension to JavaScript

• Redux - Centralized state container

• Hooks - A new way to use state and other React features without writing
a class

• React Native - The library to develop cross-platform native apps with
Javascript

• Webpack - JavaScript module bundler, popular in React community.

• CRA (Create React App) - A CLI tool to create a scaffolding React app
for bootstrapping a project.

• Next.js - A React framework with many best-in-class features including
SSR, Code-splitting, optimized for performance, etc.

Rendering with JSX
We will be using JSX in a number of our examples. JSX is an extension to
JavaScript which embeds template HTML in JS using XML-like syntax. It is
meant to be transformed into valid JavaScript, though the semantics of that
transformation are implementation-specific. JSX rose to popularity with the
React library, but has since seen other implementations as well.

 
Components, Props, and State
Components, props, and state are the three key concepts in React. Virtually
everything you're going to see or do in React can be classified into at least
one of these key concepts, and here's a quick look at these key concepts:

Components

 
Components are the building blocks of any React app. They are like
JavaScript functions that accept arbitrary input (Props) and return React
elements describing what should be displayed on the screen.

The first thing to understand is that everything on screen in a React app is
part of a component. Essentially, a React app is just components within
components within components. So developers don't build pages in React;
they build components.

Components let you split your UI into independent, reusable pieces. If you're
used to designing pages, thinking in this modular way might seem like a big
change. But if you use a design system or style guide? Then this might not be
as big of a paradigm shift as it seems.

The most direct way to define a component is to write a JavaScript function.

This function is a valid React component because it accepts a single prop
(which stands for properties) object argument with data and returns a React
element. Such components are called "function components" because they
are literally JavaScript functions.

Aside from function components, another type of component are "class
components." A class component is different from a function component in
that it is defined by an ES6 class, as shown below:

Extracting components

To illustrate the facts that components can be split into smaller components,
consider the following Tweet component:

Which can be implemented as follows:

This component can be a bit difficult to manipulate because of how clustered it
is, and reusing individual parts of it would also prove difficult. But, we can still
extract a few components from it.

The first thing we will do is extract Avatar:

This component can be a bit difficult to manipulate because of how clustered it
is, and reusing individual parts of it would also prove difficult. But, we can still
extract a few components from it.

The first thing we will do is extract Avatar:

Avatar doesn't need to know that it is being rendered inside a Comment.
This is why we have given its prop a more generic name: user rather
than author.

 
Now we will simplify the comment a little:

The next thing we will do is to a User component that renders an_ Avatar
_next to the user's name:

Extracting components seems like a tedious job, but having reusable
components makes things easier when coding for larger apps. A good
criterion to consider when simplifying components is this: if a part of your UI is
used several times (Button, Panel, Avatar), or is complex enough on its own
(App, FeedStory, Comment), it is a good candidate to be extracted to a
separate component.

 
Props

Props are a short form for properties, and they simply refer to the internal data
of a component in React. They are written inside component calls and are
passed into components. They also use the same syntax as HTML attributes,
e.g._ prop="value". Two things that are worth remembering about props;
Firstly, we determine the value of a prop and use it as part of the blueprint
before the component is built. Secondly, the value of a prop will never change,
i.e. props are read-only once they are passed into components.

The way you access a prop is by referencing it via the "this.props" property
that every component has access to.

State

State is an object that holds some information that may change over the
lifetime of the component. Meaning it is just the current snapshot of data
stored in a component's Props. The data can change over time, so techniques
to manage the way that data changes become necessary to ensure the
component looks the way engineers want it to, at just the right time — this is
called State management.

It's almost impossible to read one paragraph about React without coming
across the idea of state-management. Developers love expounding upon this
topic, but at its core, state management isn't really as complex as it sounds.

In React, state can also be tracked globally, and data can be shared between
components as needed. Essentially, this means that in React apps, loading
data in new places is not as expensive as it is with other technologies. React
apps are smarter about which data they save and load, and when. This opens
up opportunities to make interfaces that use data in new ways.

Think of React components like micro-applications with their own data, logic,
and presentation. Each component should have a single purpose. As an
engineer, you get to decide that purpose and have complete control over how
each component behaves and what data is used. You're no longer limited by
the data on the rest of the page. In your design, you can take advantage of

this in all kinds of ways. There are opportunities to present additional data that
can improve the user experience or make areas within the design more
contextual.

How to add State in React

When designing, Including state is a task that you should save for last. It is
much better to design everything as stateless as possible, using props and
events. This makes components easier to maintain, test, and understand.
Adding states should be done through either state containers such
as Redux and MobX, or a container/wrapper component. Redux is a popular
state management system for other reactive frameworks. It implements a
centralized state machine driven by actions.

https://redux.js.org/
https://mobx.js.org/README.html

In the example below, the place for the state could be LoginContainer itself.
Let's use React Hooks (this will be discussed in the next section) for this:

For further examples such as the above, see Thinking in React 2020.

Props vs State
Props and state can sometimes be confused with each other because of how
similar they are. Here are some key differences between them:

Other Concepts in React
Components, props, and state are the three key concepts for everything you'll
be doing in react. But there are also other concepts to learn about:

Lifecycle

Every react component goes through three stages; mounting, rendering, and
dismounting. The series of events that occur during these three stages can be
referred to as the component's lifecycle. While these events are partially
related to the component's state (its internal data), the lifecycle is a bit

Props State

The data remains unchanged from
component to component.

Data is the current snapshot of data stored in a component's
Props. It changes over the lifecycle of the component.

The data is read-only The data can be asynchronous

The data in props cannot be
modified

The data in state can be modified using this.setState

Props are what is passed on to
the component

State is managed within the component

https://dev.to/lukeshiru/thinking-in-react-the-2020-version-4c18

different. React has internal code that loads and unloads components as
needed, and a component can exist in several stages of use within that
internal code.

There are a lot of lifecycle methods, but the most common ones are:

render() This method is the only required method within a class component
in React and is the most used. As the name suggests, it handles the rendering
of your component to the UI, and it happens during the mounting and
rendering of your component.

When the component is created or removed:

• componentDidMount() runs after the component output has been
rendered to the DOM.

• componentWillUnmount() is invoked immediately before a
component is unmounted and destroyed

When the props or states get updated:

• shouldComponentUpdate() is invoked before rendering when new
props or state are being received.

• componentDidUpdate() is invoked immediately after updating
occurs. This method is not called for the initial render.

 
 
Higher-order component(HOC)

Higher-order components (HOC) are an advanced technique in React for
reusing component logic. Meaning a higher-order component is a function that
takes a component and returns a new component. They are patterns that
emerge from React's compositional nature. While a component transforms
props into UI, a higher-order component transforms a component into another
component, and they tend to be popular in third-party libraries.

Context

In a typical React app, data is passed down via props, but this can be
cumbersome for some types of props that are required by many components
within an application. Context provides a way to share these types of data
between components without having to explicitly pass a prop through every
level of hierarchy. Meaning with context, we can avoid passing props through
intermediate elements.

https://www.patterns.dev/posts/hoc-patterns

React Hooks
Hooks are functions that let you "hook into" React state and lifecycle features
from functional components. They let you use state and other React features
without writing a class. You can learn more about Hooks in our Hooks guide.

Thinking in React
One thing that is really amazing about React is how it makes you think about
apps as you build them. In this section, we'll walk you through the thought
process of building a Searchable product data table using React Hooks.

https://www.patterns.dev/posts/hooks-pattern

Step 1: Start with a Mock

Imagine that we already have a JSON API and a mock of our interface:

Our JSON API returns some data that looks like this:

Tip: You may find free tools like Excalidraw useful for drawing out a high-level

mock of your UI and components.

https://excalidraw.com/

Step 2: Break the UI into a Hierarchy Component

When you have your mock, the next thing to do is to draw boxes around every
component (and subcomponent) in the mock and name all of them, as shown
below.

Use the single responsibility principle: a component should ideally have a
single function. If it ends up growing, it should be broken down into smaller
subcomponents. Use this same technique for deciding if you should create a
new function or object.

You'll see in the image above that we have five components in our app. We've
listed the data each component represents.

• TweetSearchResults (orange): container for the full component

• SearchBar (blue): user input for what to search for

• TweetList (green): displays and filters tweets based on user input

• TweetCategory (turquoise): displays a heading for each category

• TweetRow (red): displays a row for each tweet

Now that the components in the mock have been identified, the next thing to
do would be to sort them into a hierarchy. Components that are found within
another component in the mock should appear as a child in the hierarchy. Like
this:

• TweetSearchResults

• SearchBar

• TweetList

• TweetCategory

• TweetRow

Step 3: Implement the components in React

The next step after completing the component hierarchy is to implement your
app. Before last year, the quickest way was to build a version that takes your
data model and renders the UI but has zero interactivity, but since the
introduction of React Hooks, an easier way to implement your app is to use
the Hooks as seen below:

Filterable list of tweets

SearchBar

Tweet list (list of tweets)

Tweet category row

Tweet Row

 
 
 
 
 

The final implementation would be all the code written together in the
previously stated hierarchy :

• TweetSearchResults

• SearchBar

• TweetList

• TweetCategory

• TweetRow

 
Getting Started
There are various ways to start using React.

Load directly on the web page: This is the simplest way to set up React.

Add the React JavaScript to your page, either as an npm dependency or via
a CDN.

Use create-react-app: create-react-app is a project aimed at getting you to
use React as soon as possible, and any React app that needs to outgrow a
single page will find that create-react-app meets that need quite easily. More
serious production applications should consider using Next.js as it has
stronger defaults (like code-splitting) baked in.

Code Sandbox: An easy way to have the create-react-app structure, without
installing it, is to go to https://codesandbox.io/s and choose "React."

Codepen: If you are prototyping a React component and enjoy using
Codepen, a number of React starting points are also available for use.

https://www.patterns.dev/posts/nextjs
https://codesandbox.io/s
https://codepen.io/topic/react/templates
https://codepen.io/flaviocopes/pen/VqeaxB

Conclusion
The React.js library was designed to make the process of building modular,
reusable user interface components simple and intuitive. As you read through
some of our other guides, we hope you found this brief introduction a helpful
high-level overview.

This guide would not have been possible without the teaching styles shared in
the official React components and props, thinking in React, thinking in React
Hooks and the scriptverse docs

https://reactjs.org/docs/components-and-props.html
https://dev.to/lukeshiru/thinking-in-react-the-2020-version-4c18
https://davidpfahler.com/thinking-in-react-hooks
https://davidpfahler.com/thinking-in-react-hooks
https://scriptverse.academy/tutorials/reactjs-pass-props-to-functional-component.html

Singleton Pattern
Share a single global instance throughout our application 

 
Singletons are classes which can be instantiated once, and can be accessed
globally. This single instance can be shared throughout our application, which
makes Singletons great for managing global state in an application.

First, let's take a look at what a singleton can look like using an ES2015 class.
For this example, we’re going to build a Counter class that has:

a getInstance method that returns the value of the instance

a getCount method that returns the current value of the counter variable

an increment method that increments the value of counter by one

a decrement method that decrements the value of counter by one  
 
However, this class doesn’t meet the criteria for a Singleton! A Singleton
should only be able to get instantiated once. Currently, we can create multiple
instances of the Counter class.

By calling the new method twice, we just set counter1 and counter2 equal
to different instances. The values returned by the getInstance method
on counter1 and counter2 effectively returned references to different
instances: they aren't strictly equal!

Let’s make sure that only one instance of the Counter class can be created.

 
One way to make sure that only one instance can be created, is by creating a
variable called instance. In the constructor of Counter, we can
set instance equal to a reference to the instance when a new instance is
created. We can prevent new instantiations by checking if
the instance variable already had a value. If that's the case, an instance
already exists. This shouldn't happen: an error should get thrown.

Perfect! We aren't able to create multiple instances anymore.

Let's export the Counter instance from the counter.js file. But before
doing so, we should freeze the instance as well.
The Object.freeze method makes sure that consuming code cannot
modify the Singleton. Properties on the frozen instance cannot be added or
modified, which reduces the risk of accidentally overwriting the values on the
Singleton.

Let's take a look at an application that implements the Counter example. We
have the following files:

• counter.js: contains the Counter class, and exports
a Counter instance as its default export

• index.js: loads the redButton.js and blueButton.js modules

• redButton.js: imports Counter, and adds Counter's increment  
method as an event listener to the red button, and logs the current value
of counter by invoking the getCount method

• blueButton.js: imports Counter, and adds Counter's increment method
as an event listener to the blue button, and logs the current value
of counter by invoking the getCount method

Both blueButton.js and redButton.js import the same
instance from counter.js. This instance is imported as Counter in both
files.

When we invoke the increment method in either redButton.js or 
blueButton.js, the value of the counter property on the Counter instance
updates in both files. It doesn't matter whether we click on the red or blue
button: the same value is shared among all instances. This is why the counter
keeps incrementing by one, even though we're invoking the method in
different files.

(Dis)advantages
Restricting the instantiation to just one instance could potentially save a lot of
memory space. Instead of having to set up memory for a new instance each
time, we only have to set up memory for that one instance, which is
referenced throughout the application. However, Singletons are actually
considered an anti-pattern, and can (or.. should) be avoided in JavaScript.

In many programming languages, such as Java or C++, it's not possible to
directly create objects the way we can in JavaScript. In those object-oriented
programming languages, we need to create a class, which creates an object.
That created object has the value of the instance of the class, just like the
value of instance in the JavaScript example.

However, the class implementation shown in the examples above is actually
overkill. Since we can directly create objects in JavaScript, we can simply use

a regular object to achieve the exact same result. Let's cover some of the
disadvantages of using Singletons!

Using a regular object

Let's use the same example as we saw previously. However this time,
the counter is simply an object containing:

• a count property

• an increment method that increments the value of count by one

• a decrement method that decrements the value of count by one

Since objects are passed by reference, both redButton.js and 
 blueButton.js are importing a reference to the same singleton
Counter object. Modifying the value of count in either of these files will
modify the value on the singletonCounter, which is visible in both files.

Testing

Testing code that relies on a Singleton can get tricky. Since we can't create
new instances each time, all tests rely on the modification to the global
instance of the previous test. The order of the tests matter in this case, and
one small modification can lead to an entire test suite failing. After testing, we
need to reset the entire instance in order to reset the modifications made by
the tests.

 
 
Dependency hiding

When importing another module, superCounter.js in this case, it may not be
obvious that that module is importing a Singleton. In other files, such
as index.js in this case, we may be importing that module and invoke its
methods. This way, we accidentally modify the values in the Singleton. This
can lead to unexpected behavior, since multiple instances of the Singleton can
be shared throughout the application, which would all get modified as well.

 

Global behavior

A Singleton instance should be able to get referenced throughout the entire
app. Global variables essentially show the same behavior: since global
variables are available on the global scope, we can access those variables
throughout the application.

index.js

Having global variables is generally considered as a bad design decision.
Global scope pollution can end up in accidentally overwriting the value of a
global variable, which can lead to a lot of unexpected behavior.

In ES2015, creating global variables is fairly uncommon. The
new let and const keyword prevent developers from accidentally polluting the
global scope, by keeping variables declared with these two keywords block-
scoped. The new module system in JavaScript makes creating globally
accessible values easier without polluting the global scope, by being able
to export values from a module, and import those values in other files.

However, the common usecase for a Singleton is to have some sort of global
state throughout your application. Having multiple parts of your codebase rely
on the same mutable object can lead to unexpected behavior.

Usually, certain parts of the codebase modify the values within the global
state, whereas others consume that data. The order of execution here is
important: we don't want to accidentally consume data first, when there is no
data to consume (yet)! Understanding the data flow when using a global state
can get very tricky as your application grows, and dozens of components rely
on each other.

State management in React

In React, we often rely on a global state through state management tools such
as Redux or React Context instead of using Singletons. Although their global
state behavior might seem similar to that of a Singleton, these tools provide
a read-only state rather than the mutable state of the Singleton. When using

Redux, only pure function reducers can update the state, after a component
has sent an action through a dispatcher.

Although the downsides to having a global state don't magically disappear by
using these tools, we can at least make sure that the global state is mutated
the way we intend it, since components cannot update the state directly.

Proxy Pattern
Share a single global instance throughout our application 

With a Proxy object, we get more control over the interactions with certain
objects. A proxy object can determine the behavior whenever we're interacting
with the object, for example when we're getting a value, or setting a value.

Generally speaking, a proxy means a stand-in for someone else. Instead of
speaking to that person directly, you'll speak to the proxy person who will
represent the person you were trying to reach. The same happens in
JavaScript: instead of interacting with the target object directly, we'll interact
with the Proxy object.

Let's create a person object, that represents John Doe.

Instead of interacting with this object directly, we want to interact with a proxy
object. In JavaScript, we can easily create a new proxy with by creating a new
instance of Proxy.

 
The second argument of Proxy is an object that represents the handler. In
the handler object, we can define specific behavior based on the type of
interaction. Although there are many methods that you can add to the Proxy
handler, the two most common ones are get and set:

• get: Gets invoked when trying to access a property

• set: Gets invoked when trying to modify a property

Effectively, what will end up happening is the following:

Instead of interacting with the person object directly, we'll be interacting with
the personProxy.

Let's add handlers to the personProxy. When trying to modify a property,
thus invoking the set method on the proxy, we want it to log the previous value
and the new value of the property. When trying to access a property, thus
invoking the get a method on the Proxy, we want it to log a more readable
sentence that contains the key any value of the property.

Perfect! Let's see what happens when we're trying to modify or retrieve a
property.

When accessing the name property, the personProxy returned a better
sounding sentence: The value of name is John Doe. When modifying
the age property, the Proxy returned the previous and new value of this
property: Changed age from 42 to 43.

 
 

A proxy can be useful to add validation. A user shouldn't be able to
change person's age to a string value, or give him an empty name. Or if the
user is trying to access a property on the object that doesn't exist, we should
let the user know.

 

 
The proxy makes sure that we weren't modifying the person object with faulty
values, which helps us keep our data pure!

Reflect

JavaScript provides a built-in object called Reflect, which makes it easier
for us to manipulate the target object when working with proxies.

Previously, we tried to modify and access properties on the target object within
the proxy through directly getting or setting the values with bracket notation.
Instead, we can use the Reflect object. The methods on
the Reflect object have the same name as the methods on
the handler object.

Instead of accessing properties through obj[prop] or setting properties
through obj[prop] = value, we can access or modify properties on the
target object through Reflect.get() and Reflect.set(). The methods
receive the same arguments as the methods on the handler object.

 
Perfect! We can access and modify the properties on the target object easily
with the Reflect object.

Proxies are a powerful way to add control over the behavior of an object. A
proxy can have various use-cases: it can help with validation, formatting,
notifications, or debugging.

Overusing the Proxy object or performing heavy operations on
each handler method invocation can easily affect the performance of your
application negatively. It's best to not use proxies for performance-critical
code.

Provider Pattern
Make data available to multiple child components

In some cases, we want to make available data to many (if not all)
components in an application. Although we can pass data to components
using props, this can be difficult to do if almost all components in your
application need access to the value of the props.

We often end up with something called prop drilling, which is the case when
we pass props far down the component tree. Refactoring the code that relies
on the props becomes almost impossible, and knowing where certain data
comes from is difficult.

Let's say that we have one App component that contains certain data. Far
down the component tree, we have a ListItem, Header and  
Text component that all need this data. In order to get this data to these
components, we'd have to pass it through multiple layers of components.

In our codebase, that would look something like the following:

Passing props down this way can get quite messy. If we want to rename
the data prop in the future, we'd have to rename it in all components. The
bigger your application gets, the trickier prop drilling can be.

It would be optimal of we could skip all the layers of components that don't
need to use this data. We need to have something that gives the components
that need access to the value of data direct access to it, without relying on
prop drilling.

This is where the Provider Pattern can help us out! With the Provider Pattern,
we can make data available to multiple components. Rather than passing that
data down each layer through props, we can wrap all components in
a Provider. A Provider is a higher order component provided to us by the
a Context object. We can create a Context object, using
the createContext method that React provides for us.

The Provider receives a value prop, which contains the data that we want to
pass down. All components that are wrapped within this provider have access
to the value of the value prop.

We no longer have to manually pass down the data prop to each component!

Each component can get access to the data, by using the useContext hook.
This hook receives the context that data has a reference with, DataContext  
in this case. The useContext hook lets us read and write data to the context
object.

The components that aren't using the data value won't have to deal
with data at all. We no longer have to worry about passing props down several
levels through components that don't need the value of the props, which
makes refactoring a lot easier.

The Provider pattern is very useful for sharing global data. A common use
case for the provider pattern is sharing a theme UI state with many
components.

Say we have a simple app that shows a list.

List.js

App.js

We want the user to be able to switch between light mode and dark mode, by
toggling the switch. When the user switches from dark- to light mode and vice
versa, the background color and text color should change! Instead of passing
the current theme value down to each component, we can wrap the
components in a ThemeProvider, and pass the current theme colors to the
provider.

Since the Toggle and List components are both wrapped within
the ThemeContext provider, we have access to the
values theme and toggleTheme that are passed as a value to the provider.

Within the Toggle component, we can use the toggleTheme function to
update the theme accordingly.

The List component itself doesn't care about the current value of the theme.
However, the ListItem components do! We can use the theme context
directly within the ListItem.

Perfect! We didn't have to pass down any data to components that didn't care
about the current value of the theme.

Hooks

We can create a hook to provide context to components. Instead of having to
import useContext and the Context in each component, we can use a
hook that returns the context we need.

To make sure that it's a valid theme, let's throw an error
if useContext(ThemeContext) returns a falsy value.

Instead of wrapping the components directly with
the ThemeContext.Provider component, we can create a HOC that wraps
this component to provide its values. This way, we can separate the context
logic from the rendering components, which improves the reusability of the
provider.

Each component that needs to have access to the ThemeContext, can now
simply use the useThemeContext hook.

Prototype Pattern
Share properties among many objects of the same type

The prototype pattern is a useful way to share properties among many objects
of the same type. The prototype is an object that's native to JavaScript, and
can be accessed by objects through the prototype chain.

In our applications, we often have to create many objects of the same type. A
useful way of doing this is by creating multiple instances of an ES6 class.

Let's say we want to create many dogs! In our example, dogs can't do that
much: they simply have a name, and they can bark!

Notice here how the constructor contains a name property, and the class itself
contains a bark property. When using ES6 classes, all properties that are
defined on the class itself, bark in this case, are automatically added to
the prototype.

We can see the prototype directly through accessing the prototype property
on a constructor, or through the __proto__ property on any instance.

The value of __proto__ on any instance of the constructor, is a direct
reference to the constructor's prototype! Whenever we try to access a
property on an object that doesn't exist on the object directly, JavaScript
will go down the prototype chain to see if the property is available within the
prototype chain.

The prototype pattern is very powerful when working with objects that should
have access to the same properties. Instead of creating a duplicate of the
property each time, we can simply add the property to the prototype, since all
instances have access to the prototype object.

Since all instances have access to the prototype, it's easy to add properties to
the prototype even after creating the instances.

Say that our dogs shouldn't only be able to bark, but they should also be able
to play! We can make this possible by adding a play property to the prototype.

 

 
The term prototype chain indicates that there could be more than one step.
Indeed! So far, we've only seen how we can access properties that are directly
available on the first object that __proto__ has a reference to. However,
prototypes themselves also have a __proto__ object!

Let's create another type of dog, a super dog! This dog should inherit
everything from a normal Dog, but it should also be able to fly. We can create
a super dog by extending the Dog class and adding a fly method.

 
Let's create a flying dog called Daisy, and let her bark and fly!

We have access to the bark method, as we extended the Dog class. The
value of __proto__ on the prototype of SuperDog points to
the Dog.prototype object!

 
It gets clear why it's called a prototype chain: when we try to access a
property that's not directly available on the object, JavaScript recursively
walks down all the objects that __proto__ points to, until it finds the
property!

Object.create

The Object.create method lets us create a new object, to which we can
explicitly pass the value of its prototype.

 
Although pet1 itself doesn't have any properties, it does have access to
properties on its prototype chain! Since we passed the dog object as pet1’s
prototype, we can access the bark property.

Perfect! Object.create is a simple way to let objects directly inherit
properties from other objects, by specifying the newly created object's
prototype. The new object can access the new properties by walking down the
prototype chain.

The prototype pattern allows us to easily let objects access and inherit
properties from other objects. Since the prototype chain allows us to access
properties that aren't directly defined on the object itself, we can avoid
duplication of methods and properties, thus reducing the amount of memory
used.

Container/
Presentational Pattern
Enforce separation of concerns by separating the view from the

application logic

In React, one way to enforce separation of concerns is by using
the Container/Presentational pattern. With this pattern, we can separate the
view from the application logic.

Let's say we want to create an application that fetches 6 dog images, and
renders these images on the screen. Ideally, we want to enforce separation of
concerns by separating this process into two parts:

1. Presentational Components: Components that care about how data is
shown to the user. In this example, that's the rendering the list of dog
images.

2. Container Components: Components that care about what data is shown
to the user. In this example, that's fetching the dog images.

 
Fetching the dog images deals with application logic, whereas displaying the
images only deals with the view.

Presentational Component
A presentational component receives its data through props. Its primary
function is to simply display the data it receives the way we want them to,
including styles, without modifying that data.

Let's take a look at the example that displays the dog images. When rendering
the dog images, we simply want to map over each dog image that was
fetched from the API, and render those images. In order to do so, we can
create a functional component that receives the data through props, and
renders the data it received.

The DogsImages component is a presentational component. Presentational
components are usually stateless: they do not contain their own React state,
unless they need a state for UI purposes. The data they receive, is not altered
by the presentational components themselves.

DogImages.js

Presentational components receive their data from container components.

 
Container Components
The primary function of container components is to pass data to
presentational components, which they contain. Container components
themselves usually don't render any other components besides the
presentational components that care about their data. Since they don't render
anything themselves, they usually do not contain any styling either.

In our example, we want to pass dog images to
the DogsImages presentational component. Before being able to do so, we
need to fetch the images from an external API. We need to create a container
component that fetches this data, and passes this data to the presentational
component DogsImages in order to display it on the screen.

 

Combining these two components together makes it possible to separate
handling application logic with the view.

DogImagesContainer.js

Hooks
In many cases, the Container/Presentational pattern can be replaced with
React Hooks. The introduction of Hooks made it easy for developers to add
statefulness without needing a container component to provide that state.

Instead of having the data fetching logic in
the DogsImagesContainer component, we can create a custom hook that
fetches the images, and returns the array of dogs.

By using this hook, we no longer need the
wrapping DogsImagesContainer container component to fetch the data, and
send this to the presentational DogsImages component. Instead, we can use
this hook directly in our presentational DogsImages component!

By using the useDogImages hook, we still separated the application logic
from the view. We're simply using the returned data from
the useDogImages hook, without modifying that data within
the DogImages component.

Hooks make it easy to separate logic and view in a component, just like the
Container/Presentational pattern. It saves us the extra layer that was
necessary in order to wrap the presentational component within the container
component.

Pros

There are many benefits to using the Container/Presentational pattern.  
 
The Container/Presentational pattern encourages the separation of concerns.
Presentational components can be pure functions which are responsible for
the UI, whereas container components are responsible for the state and data
of the application. This makes it easy to enforce the separation of concerns

Presentational components are easily made reusable, as they
simply display data without altering this data. We can reuse the presentational
components throughout our application for different purposes.

Since presentational components don't alter the application logic, the
appearance of presentational components can easily be altered by someone
without knowledge of the codebase, for example a designer. If the
presentational component was reused in many parts of the application, the
change can be consistent throughout the app.

Testing presentational components is easy, as they are usually pure functions.
We know what the components will render based on which data we pass,
without having to mock a data store.

Cons

The Container/Presentational pattern makes it easy to separate application
logic from rendering logic. However, Hooks make it possible to achieve the
same result without having to use the Container/Presentational pattern, and
without having to rewrite a stateless functional component into a class
component. Note that today, we don't need to create class components to use
state anymore.

Although we can still use the Container/Presentational pattern, even with
React Hooks, this pattern can easily be an overkill in smaller sized application.

Observer Pattern
Use observables to notify subscribers when an event occurs

With the observer pattern, we can subscribe certain objects, the observers, to
another object, called the observable. Whenever an event occurs, the
observable notifies all its observers!

An observable object usually contains 3 important parts:

• observers: an array of observers that will get notified whenever a specific
event occurs

• subscribe(): a method in order to add observers to the observers list

• unsubscribe(): a method in order to remove observers from the
observers list

• notify(): a method to notify all observers whenever a specific event
occurs

Perfect, let’s create an observable! An easy way of creating one, is by using
an ES6 class.

Awesome! We can now add observers to the list of observers with the
subscribe method, remove the observers with the unsubscribe method, and
notify all subscribes with the notify method.

Let’s build something with this observable. We have a very basic app that only
consists of two components: a Button, and a Switch.

We want to keep track of the user interaction with the application. Whenever a
user either clicks the button or toggles the switch, we want to log this event
with the timestamp. Besides logging it, we also want to create a toast
notification that shows up whenever an event occurs!

Whenever the user invokes the handleClick or handleToggle function, the
functions invoke the notify method on the observer. The notify method notifies
all subscribers with the data that was passed by
the handleClick or handleToggle function!

First, let's create the logger and tastily functions. These functions will
eventually receive data from the notify method.

Currently, the logger and toastify functions are unaware of observable:
the observable can't notify them yet! In order to make them observers, we’d
have to subscribe them, using the subscribe method on the observable!

Whenever an event occurs, the logger and toastify functions will get
notified. Now we just need to implement the functions that actually notify the
observable: the handleClick and handleToggle functions! These functions
should invoke the notify method on the observable, and pass the data that the
observers should receive.

Awesome! We just finished the entire flow: handleClick and handleToggle 
invoke the notify method on the observer with the data, after which the
observer notifies the subscribers: the logger and toastify functions in this
case.

Whenever a user interacts with either of the components, both the logger and
the toastify functions will get notified with the data that we passed to
the notify method! 

Observable.js

App.js

Although we can use the observer pattern in many ways, it can be very useful
when working with asynchronous, event-based data. Maybe you want certain
components to get notified whenever certain data has finished downloading,
or whenever users sent new messages to a message board and all other
members should get notified.

Pros

Using the observer pattern is a great way to enforce separation of
concerns and the single-responsiblity principle. The observer objects aren’t
tightly coupled to the observable object, and can be (de)coupled at any time.
The observable object is responsible for monitoring the events, while the
observers simply handle the received data.  

Cons

If an observer becomes too complex, it may cause performance issues when
notifying all subscribers.

 
Case study
A popular library that uses the observable pattern is RxJS.

ReactiveX combines the Observer pattern with the Iterator pattern and
functional programming with collections to fill the need for an ideal way of
managing sequences of events. - RxJS

With RxJS, we can create observables and subscribe to certain events! Let’s
look at an example that’s covered in their documentation, which logs whether
a user was dragging in the document or not.

Module Pattern
Split up your code into smaller, reusable pieces

 
As your application and codebase grow, it becomes increasingly important to
keep your code maintainable and separated. The module pattern allows you
to split up your code into smaller, reusable pieces.

Besides being able to split your code into smaller reusable pieces, modules
allow you to keep certain values within your file private. Declarations within a
module are scoped (encapsulated) to that module , by default. If we don’t
explicitly export a certain value, that value is not available outside that
module. This reduces the risk of name collisions for values declared in other
parts of your codebase, since the values are not available on the global
scope.

ES2015 Modules
ES2015 introduced built-in JavaScript modules. A module is a file containing
JavaScript code, with some difference in behavior compared to a normal
script.

Let's look at an example of a module called math.js, containing
mathematical functions.

 
We have a math.js file containing some simple mathematical logic. We have
functions that allow users to add, multiply, subtract, and get the square of
values that they pass.

However, we don’t just want to use these functions in the math.js file, we
want to be able to reference them in the index.js file!

In order to make the functions from math.js available to other files, we first
have to export them. In order to export code from a module, we can use
the export keyword.

math.js

One way of exporting the functions, is by using named exports: we can simply
add the export keyword in front of the parts that we want to publicly expose.
In this case, we’ll want to add the export keyword in front of every function,
since index.js should have access to all four functions.

We just made the add, multiply, subtract, and square functions
exportable! However, just exporting the values from a module is not enough to
make them publicly available to all files. In order to be able to use the
exported values from a module, you have to explicitly import them in the file
that needs to reference them. 

math.js

We have to import the values on top of the index.js file, by using
the import keyword. To let javascript know from which module we want to
import these functions, we need to add a from value and the relative path to
the module.

We just imported the four functions from the math.js module in
the index.js file! Let’s try and see if we can use the functions now!

The reference error is gone, we can now use the exported values from the
module!

index.js

A great benefit of having modules, is that we only have access to the values
that we explicitly exported using the export keyword. Values that we didn't
explicitly export using the export keyword, are only available within that
module.

Let's create a value that should only be referenceable within the math.js file,
called privateValue.

math.js

Notice how we didn't add the export keyword in front of privateValue. Since we
didn’t export the privateValue variable, we don’t have access to this value
outside of the math.js module!

By keeping the value private to the module, there is a reduced risk of
accidentally polluting the global scope. You don't have to fear that you will
accidentally overwrite values created by developers using your module, that
may have had the same name as your private value: it prevents naming
collisions.

Sometimes, the names of the exports could collide with local values.

In this case, we have functions called add and multiply in index.js. If we
would import values with the same name, it would end up in a naming
collision: add and multiply have already been declared! Luckily, we
can rename the imported values, by using the as keyword.

Let's rename the imported add and multiply functions to addValues and  
multiplyValues.

index.js

Besides named exports, which are exports defined with just
the export keyword, you can also use a default export. You can only
have one default export per module.

Let’s make the add function our default export, and keep the other functions
as named exports. We can export a default value, by adding export
default in front of the value.

math.js

The difference between named exports and default exports, is the way the
value is exported from the module, effectively changing the way we have to
import the value.

Previously, we had to use the brackets for our named exports:  
import { module } from 'module'. With a default export, we can
import the value without the brackets: import module from 'module'.

The value that's been imported from a module without the brackets, is always
the value of the default export, if there is a default export available.

Since JavaScript knows that this value is always the value that was exported
by default, we can give the imported default value another name than the
name we exported it with. Instead of importing the add function using the
name add, we can call it addValues, for example.

 

index.js

Even though we exported the function called add, we can import it calling it
anything we like, since JavaScript knows you are importing the default export.

We can also import all exports from a module, meaning all named
exports and the default export, by using an asterisk * and giving the name we
want to import the module as. The value of the import is equal to an object
containing all the imported values.

Say that you want to import the entire module as math.

 

 
The imported values are properties on the math object.

index.js

index.js

In this case, we're importing all exports from a module. Be careful when doing
this, since you may end up unnecessarily importing values. Using the * only
imports all exported values. Values private to the module are still not available
in the file that imports the module, unless you explicitly exported them. 

index.js

React
When building applications with React, you often have to deal with a large
amount of components. Instead of writing all of these components in one file,
we can separate the components in their own files, essentially creating a
module for each component.

We have a basic todo-list, containing a list, list items, an input field, and
a button.

App.js

Button.js

We just split our components in their separate files:

• TodoList.js for the List component

• Button.js for the customized Button component

• Input.js for the customized Input component.

Throughout the app, we don't want to use the default Button and 
Input component, imported from the material-ui library. Instead, we want to
use our custom version of the components, by adding custom styles to it
defined in the styles object in their files.  
Rather than importing the default Button and Input component each time in
our application and adding custom styles to it over and over, we can now
simply import the default Button and Input component once, add styles,
and export our custom component.

Input.js

Dynamic import
When importing all modules on the top of a file, all modules get loaded before
the rest of the file. In some cases, we only need to import a module based on
a certain condition. With a dynamic import, we can import modules on
demand.

 
Let's dynamically import the math.js example used in the previous
paragraphs. The module only gets loaded, if the user clicks on the button.

By dynamically importing modules, we can reduce the page load time.  
We only have to load, parse, and compile the code that the user really
needs, when the user needs it.

With the module pattern, we can encapsulate parts of our code that should not
be publicly exposed. This prevents accidental name collision and global scope
pollution, which makes working with multiple dependencies and namespaces
less risky. In order to be able to use ES2015 modules in all JavaScript
runtimes, a transpiler such as Babel is needed.

Mixin Pattern
Add functionality to objects or classes without inheritance

A mixin is an object that we can use in order to add reusable functionality to
another object or class, without using inheritance. We can't use mixins on their
own: their sole purpose is to add functionality to objects or classes without
inheritance.

Let's say that for our application, we need to create multiple dogs. However,
the basic dog that we create doesn't have any properties but a name property.

A dog should be able to do more than just have a name. It should be able to
bark, wag its tail, and play! Instead of adding this directly to the Dog, we can
create a mixin that provides the bark, wagTail and play property for us.

 
We can add the dogFunctionality mixin to the Dog prototype with
the Object.assign method. This method lets us add properties to the target
object: Dog.prototype in this case. Each new instance of Dog will have
access to the the properties of dogFunctionality, as they're added to
the Dog's prototype!

Let's create our first pet, pet1, called Daisy. As we just added
the dogFunctionality mixin to the Dog's prototype, Daisy should be able
to walk, wag her tail, and play!

Perfect! Mixins make it easy for us to add custom functionality to classes or
objects without using inheritance.

Although we can add functionality with mixins without inheritance, mixins
themselves can use inheritance! 

Most mammals (besides dolphins.. and maybe some more) can walk and
sleep as well. A dog is a mammal, and should be able to walk and sleep!
Let's create a animalFunctionality mixin that adds
the walk and sleep properties.

We can add these properties to the dogFunctionality prototype,
using Object.assign. In this case, the target object
is dogFunctionality.

Perfect! Any new instance of Dog can now access the walk and
sleep methods as well.

An example of a mixin in the real world is visible on the Window interface in a
browser environment. The Window object implements many of its properties
from the WindowOrWorkerGlobalScope and WindowEventHandlers
mixins, which allow us to have access to properties such as setTimeout
and setInterval, indexedDB, and isSecureContext. 

Since it's a mixin, thus is only used to add functionality to objects, you won't
be able to create objects of type WindowOrWorkerGlobalScope.

React (pre ES6) 

Mixins were often used to add functionality to React components before the
introduction of ES6 classes. The React team discourages the use of mixins as
it easily adds unnecessary complexity to a component, making it hard to
maintain and reuse. The React team encouraged the use of higher order
components instead, which can now often be replaced by Hooks.
 

Mixins allow us to easily add functionality to objects without inheritance by
injecting functionality into an object's prototype. Modifying an object's
prototype is seen as bad practice, as it can lead to prototype pollution and a
level of uncertainty regarding the origin of our functions.

Mediator/
Middleware Pattern

Use a central mediator object to handle communication between
components

 
The mediator pattern makes it possible for components to interact with each
other through a central point: the mediator. Instead of directly talking to each
other, the mediator receives the requests, and sends them forward! In
JavaScript, the mediator is often nothing more than an object literal or a
function.

You can compare this pattern to the relationship between an air traffic
controller and a pilot. Instead of having the pilots talk to each other directly,
which would probably end up being quite chaotic, the pilots talk the air traffic
controller. The air traffic controller makes sure that all planes receive the
information they need in order to fly safely, without hitting the other airplanes.

Although we're hopefully not controlling airplanes in JavaScript, we often have
to deal with multidirectional data between objects. The communication
between the components can get rather confusing if there is a large number of
components.

 
Instead of letting every objects talk directly to the other objects, resulting in a
many-to-many relationship, the object's requests get handled by the mediator.
The mediator processes this request, and sends it forward to where it needs
to be.

A good use case for the mediator pattern is a chatroom! The users within the
chatroom won't talk to each other directly. Instead, the chatroom serves as the
mediator between the users.

We can create new users that are connected to the chat room. Each user
instance has a send method which we can use in order to send messages.

Case Study
Express.js is a popular web application server framework. We can add
callbacks to certain routes that the user can access.

Say we want add a header to the request if the user hits the root /. We can
add this header in a middleware callback.

The next method calls the next callback in the request-response cycle. We'd
effectively be creating a chain of middleware functions that sit between the
request and the response, or vice versa.

Let's add another middleware function that checks whether the test-
header was added correctly. The change added by the previous middleware
function will be visible throughout the chain.

 
 

 
Perfect! We can track and modify the request object all the way to the
response through one or multiple middleware functions.

Every time the user hits a root endpoint '/', the two middleware  
 callbacks will be invoked.

The middleware pattern makes it easy for us to simplify many-to-many
relationships between objects, by letting all communication flow through one
central point.

Render Props Pattern
Pass JSX elements to components through props

 
In the section on Higher Order Components, we saw that being able to reuse
component logic can be very convenient if multiple components need access
to the same data, or contain the same logic.

Another way of making components very reusable, is by using the render
prop pattern. A render prop is a prop on a component, which value is a
function that returns a JSX element. The component itself does not render
anything besides the render prop. Instead, the component simply calls the
render prop, instead of implementing its own rendering logic.

Imagine that we have a Title component. In this case, the Title  
component shouldn't do anything besides rendering the value that we pass.
We can use a render prop for this! Let's pass the value that we want
the Title component to render to the render prop.

 
Within the Title component, we can render this data by returning the
invoked render prop!

To the Title element, we have to pass a prop called render, which is a
function that returns a React element. 

 
 

Perfect, works smoothly! The cool thing about render props, is that the
component that receives the prop is very reusable. We can use it multiple
times, passing different values to the render prop each time.

 

Although they're called render props, a render prop doesn't have to be
called render. Any prop that renders JSX is considered a render prop! Let's
rename the render props that were used in the previous example, and give
them specific names instead!

Great! We've just seen that we can use render props in order to  
 make a component reusable, as we can pass different data to the render
prop each time. But, why would you want to use this?

A component that takes a render prop usually does a lot more than simply
invoking the render prop. Instead, we usually want to pass data from the
component that takes the render prop, to the element that we pass as a
render prop!

The render prop can now receive this value that we passed as its argument.

 
Let's look at an example! We have a simple app, where a user can type a
temperature in Celsius. The app shows the value of this temperature in
Fahrenheit and Kelvin.

Hmm.. Currently there's a problem. The stateful Input component contains the
value of the user's input, meaning that the Fahrenheit and Kelvin component
don't have access to the user's input!

Lifting state
One way to make the users input available to both
the Fahrenheit and Kelvin component in the above example, we'd have
to lift the state

In this case, we have a stateful Input component. However, the sibling
components Fahrenheit and Kelvin also need access to this data. Instead
of having a stateful Input component, we can lift the state up to the first
common ancestor component that has a connection to Input, 
Fahrenheit and Kelvin: the App component in this case!

Although this is a valid solution, it can be tricky to lift state in larger
applications with components that handle many children. Each state change
could cause a re-render of all the children, even the ones that don't handle the
data, which could negatively affect the performance of your app.

Instead, we can use render props! Let's change the Input component in a way
that it can receive render props

Perfect, the Kelvin and Fahrenheit components now have access to the
value of the user's input!

Besides regular JSX components, we can pass functions as children to React
components. This function is available to us through the children prop, which
is technically also a render prop.

Let's change the Input component. Instead of explicitly passing
the render prop, we'll just pass a function as a child for the Input component.

.

We have access to this function, through the props.children prop that's
available on the Input component. Instead of calling props.render with the
value of the user input, we'll call props.children with the value of the user
input.

Hooks
In some cases, we can replace render props with Hooks. A good example of
this is Apollo Client.

One way to use Apollo Client is through the Mutation and Query
 components. Let's look at the same Input example that was covered in the
Higher Order Components section. Instead of using a the graphql() higher
order component, we’ll now use the Mutation component that receives a
render prop.

In order to pass data down from the Mutation component to the elements
that need the data, we pass a function as a child. The function receives the
value of the data through its arguments.

 
Although we can still use the render prop pattern and is often preferred
compared to the higher order component pattern, it has its downsides.

One of the downsides is deep component nesting. We can nest
multiple Mutation or Query components, if a component needs access to
multiple mutations or queries.

After the release of Hooks, Apollo added Hooks support to the Apollo Client
library. Instead of using the Mutation  
and Query render props, developers can now directly access the data
through the hooks that the library provides.

Let's look at an example that uses the exact same data as we previously saw
in the example with the Query render prop. This time, we'll provide the data to
the component by using the useQuery hook that Apollo Client provided for
us.

By using the useQuery hook, we reduced the amount of code that was
needed in order to provide the data to the component.

Pros
Sharing logic and data among several components is easy with the render
props pattern. Components can be made very reusable, by using a render
or children prop. Although the Higher Order Component pattern mainly solves
the same issues, namely reusability and sharing data, the render props
pattern solves some of the issues we could encounter by using the HOC
pattern.

The issue of naming collisions that we can run into by using the HOC pattern
no longer applies by using the render props pattern, since we don't
automatically merge props. We explicitly pass the props down to the child
components, with the value provided by the parent component.

Since we explicitly pass props, we solve the HOC's implicit props issue. The
props that should get passed down to the element, are all visible in the render
prop's arguments list. This way, we know exactly where certain props come
from.

We can separate our app's logic from rendering components through render
props. The stateful component that receives a render prop can pass the data
onto stateless components, which merely render the data.

 
Cons
The issues that we tried to solve with render props, have largely been
replaced by React Hooks. As Hooks changed the way we can add reusability
and data sharing to components, they can replace the render props pattern in
many cases.

Since we can't add lifecycle methods to a render prop, we can only use it on
components that don't need to alter the data they receive.

Hooks Pattern
Use functions to reuse stateful logic among multiple components

throughout the app

React 16.8 introduced a new feature called Hooks. Hooks make it possible to
use React state and lifecycle methods, without having to use a ES2015 class
component.

Although Hooks are not necessarily a design pattern, Hooks play a very
important role in your application design. Many traditional design patterns can
be replaced by Hooks.

Class components
Before Hooks were introduced in React, we had to use class components in
order to add state and lifecycle methods to components. A typical class
component in React can look something like:

A class component can contain a state in its constructor, lifecycle methods
such as componentDidMount and componentWillUnmount to perform
side effects based on a component's lifecycle, and custom methods to add
extra logic to a class.

Although we can still use class components after the introduction of React
Hooks, using class components can have some downsides! Let's look at
some of the most common issues when using class components.

Understanding ES2015 classes
Since class components were the only component that could handle state and
lifecycle methods before React Hooks, we often ended up having to refactor
functional components into a class components, in order to add the extra
functionality.

In this example, we have a simple div that functions as a button.

Instead of always displaying disabled, we want to change it to enabled when
the user clicks on the button, and add some extra CSS styling to the button
when that happens.

In order to do that, we need to add state to the component in order to know
whether the status is enabled or disabled. This means that we'd have to
refactor the functional component entirely, and make it a class component that
keeps track of the button's state.

Finally, our button works the way we want it to!

In this example, the component is very small and refactoring wasn't a such a
great deal. However, your real-life components probably contain of many
more lines of code, which makes refactoring the component a lot more
difficult.

Besides having to make sure you don't accidentally change any behavior
while refactoring the component, you also need to understand how ES2015

classes work. Why do we have to bind the custom methods? What does
the constructor do? Where does the this keyword come from? It can be
difficult to know how to refactor a component properly without accidentally
changing the data flow.  

Restructuring
The common way to share code among several components, is by using
the Higher Order Component or Render Props pattern. Although both patterns
are valid and a good practice, adding those patterns at a later point in time
requires you to restructure your application.

Besides having to restructure your app, which is trickier the bigger your
components are, having many wrapping components in order to share code
among deeper nested components can lead to something that's best referred
to as a wrapper hell. It's not uncommon to open your dev tools and seeing a
structure similar to:

The wrapper hell can make it difficult to understand how data is flowing
through your application, which can make it harder to figure out why
unexpected behavior is happening. 

Complexity

As we add more logic to class components, the size of the component
increases fast. Logic within that component can get tangled and unstructured,
which can make it difficult for developers to understand where certain logic is
used in the class component. This can make debugging and optimizing
performance more difficult.

Lifecycle methods also require quite a lot of duplication in the code. Let's take
a look at an example, which uses a Counter component and
a Width component.

 
The way the App component is structured can be visualized as the following:

Although this is a small component, the logic within the component is already
quite tangled. Whereas certain parts are specific for the counter logic, other
parts are specific for the width logic. As your component grows, it can get
increasingly difficult to structure logic within your component, find related logic
within the component.

Besides tangled logic, we're also duplicating some logic within the lifecycle
methods. In both componentDidMount and componentWillUnmount,
we're customizing the behavior of the app based on the
window's resize event.

Hooks
It's quite clear that class components aren't always a great feature in React. In
order to solve the common issues that React developers can run into when
using class components, React introduced React Hooks. React Hooks are
functions that you can use to manage a components state and lifecycle
methods. React Hooks make it possible to:

• add state to a functional component

• manage a component's lifecycle without having to use lifecycle methods
such as componentDidMount and componentWillUnmount

• reuse the same stateful logic among multiple components throughout the
app

First, let's take a look at how we can add state to a functional component,
using React Hooks. 

State Hook

React provides a hook that manages state within a functional component,
called useState.

Let’s see how a class component can be restructured into a functional
component, using the useState hook. We have a class component
called Input, which simply renders an input field. The value of input in the state
updates, whenever the user types anything in the input field.

 
In order to use the useState hook, we need to access
the useState method that React provides for us. The useState method
expects an argument: this is the initial value of the state, an empty string in
this case.

We can destructure two values from the useState method:

1. The current value of the state.

2. The method with which we can update the state.

The first value can be compared to a class component's this.state.
[value]. The second value can be compared to a class
component's this.setState method.

Since we're dealing with the value of an input, let's call the current value of the
state input, and the method in order to update the state setInput. The initial
value should be an empty string.

We can now refactor the Input class component into a stateful functional
component.

The value of the input field is equal to the current value of the input state, just
like in the class component example. When the user types in the input field,
the value of the input state updates accordingly, using the setInput method.

Effect Hook

We've seen we can use the useState component to handle state within a
functional component, but another benefit of class components was the
possibility to add lifecycle methods to a component.

With the useEffect hook, we can "hook into" a components lifecycle.
The useEffect hook effectively combines
the componentDidMount, componentDidUpdate,
and componentWillUnmount lifecycle methods.

Let's use the input example we used in the State Hook section. Whenever the
user is typing anything in the input field, we also want to log that value to the
console.

 
We need to use a useEffect hook that "listens" to the input value. We can
do so, by adding input to the dependency array of the useEffect hook. The
dependency array is the second argument that the useEffect hook
receives.

The value of the input now gets logged to the console whenever the user
types a value.

Custom Hooks

Besides the built-in hooks that React provides
(useState, useEffect, useReducer, useRef, useContext, useMemo, u
seContext, useImperativeHandle, useLayoutEffect,  
useDebugValue, useCallback), we can easily create our own custom
hooks.

You may have noticed that all hooks start with use. It's important to start your
hooks with use in order for React to check if it violates the rules of Hooks.

Let's say we want to keep track of certain keys the user may press when
writing the input. Our custom hook should be able to receive the key we want
to target as its argument.

We want to add a keydown and keyup event listener to the key that the user
passed as an argument. If the user pressed that key, meaning
the keydown event gets triggered, the state within the hook should toggle
to true. Else, when the user stops pressing that button, the keyup event gets
triggered and the state toggles to false.

Perfect! We can use this custom hook in our input application. Let's log to the
console whenever the user presses the q, l or w key. 
 
 

 
Instead of keeping the key press logic local to the Input component, we can
now reuse the useKeyPress hook throughout multiple components, without
having to rewrite the same logic over and over.

Another great advantage of Hooks, is that the community can build and share
hooks. We just wrote the useKeyPress hook ourselves, but that actually
wasn't necessary at all! The hook was already built by someone else and
ready to use in our application if we just installed it!

Let's rewrite the counter and width example shown in the previous section.
Instead of using a class component, we'll rewrite the app using React Hooks.

We broke the logic of the App function into several pieces:

• useCounter: A custom hook that returns the current value of count,
an increment method, and a decrement method.

• useWindowWidth: A custom hook that returns the window's current width.

• App: A functional, stateful component that returns
the Counter and Width component.

By using React Hooks instead of a class component, we were able to break
the logic down into smaller, reusable pieces that separated the logic.

Let's visualize the changes we just made, compared to the old App class
component.

Using React Hooks just made it much clearer to separate the logic of our
component into several smaller pieces. Reusing the same stateful logic just
became much easier, and we no longer have to rewrite functional components
into class components if we want to make the component stateful. A good
knowledge of ES2015 classes is no longer required, and having reusable
stateful logic increases the testability, flexibility and readability of components.

Adding Hooks
Like other components, there are special functions that are used when you
want to add Hooks to the code you have written. Here's a brief overview of
some common Hook functions: 
 
useState  
 
The useState Hook enables developers to update and manipulate state
inside function components without needing to convert it to a class
component. One advantage of this Hook is that it is simple and does not
require as much complexity as other React Hooks. 
 
useEffect

The useEffect Hook is used to run code during major lifecycle events in a
function component. The main body of a function component does not allow
mutations, subscriptions, timers, logging, and other side effects. If they are
allowed, it could lead to confusing bugs and inconsistencies within the UI. The
useEffect hook prevents all of these "side effects" and allows the UI to run

smoothly. It is a combination
of componentDidMount , componentDidUpdate ,
and componentWillUnmount, all in one place.

useContext

The useContext Hook accepts a context object, which is the value returned
from React.createContext, and returns the current context value for that
context. The useContext Hook also works with the React Context API in order
to share data throughout the app without the need to pass your app props
down through various levels.

It should be noted that the argument passed to the useContext hook must
be the context object itself and any component calling
the useContext always re-render whenever the context value changes.

useReducer

The useReducer Hook gives an alternative to useState and is especially
preferable to it when you have complex state logic that involves multiple sub-
values or when the next state depends on the previous one. It takes on
a reducer function and an initial state input and returns the current state and
a dispatch function as output by means of array
destructuring. useReducer also optimizes the performance of components
that trigger deep updates. 

Pros and Cons of using Hooks

Here are some benefits of making use of Hooks:

Fewer lines of code Hooks allows you group code by concern and
functionality, and not by lifecycle. This makes the code not only cleaner and
concise but also shorter. Below is a comparison of a simple stateless
component of a searchable product data table using React, and how it looks
in Hooks after using the useState keyword.

 
 
 

Stateless Component

Same component with Hooks

 
Simplifies complex components

JavaScript classes can be difficult to manage, hard to use with hot reloading
and may not minify as well. React Hooks solves these problems and ensures
functional programming is made easy. With the implementation of Hooks, We
don't need to have class components.

Reusing stateful logic Classes in JavaScript encourage multiple levels of
inheritance that quickly increase overall complexity and potential for errors.

However, Hooks allow you to use state, and other React features without
writing a class. With React, you can always reuse stateful logic without the
need to rewrite the code over and over again. This reduces the chances of
errors and allows for composition with plain functions.

 
Sharing non-visual logic

Until the implementation of Hooks, React had no way of extracting and
sharing non-visual logic. This eventually led to more complexities, such as the
HOC patterns and Render props, just to solve a common problem. But, the
introduction of Hooks has solved this problem because it allows for the
extraction of stateful logic to a simple JavaScript function.

There are of course some potential downsides to Hooks worth keeping in
mind:

• Have to respect its rules, without a linter plugin, it is difficult to know which
rule has been broken.

• Need a considerable time practicing to use properly (Exp: useEffect).

• Be aware of the wrong use (Exp: useCallback, useMemo).

 

React Hooks vs Classes
When Hooks were introduced to React, it created a new problem: how do we
know when to use function components with Hooks and class components?
With the help of Hooks, it is possible to get state and partial lifecycle Hooks
even in function components. Hooks also allow you to use local state and
other React features without writing a class.

Here are some differences between Hooks and Classes to help you decide:

React Hooks Classes

It helps avoid multiple
hierarchies and make code
clearer

Generally, when you use HOC or renderProps, you have to
restructure your App with multiple hierarchies when you try to see it
in DevTools

It provides uniformity across
React components.

Classes confuse both humans and machines due to the need to
understand binding and the context in which functions are called.

HOC Pattern
Pass reusable logic down as props to components throughout your

application

 
Within our application, we often want to use the same logic in multiple
components. This logic can include applying a certain styling to components,
requiring authorization, or adding a global state.

One way of being able to reuse the same logic in multiple components, is by
using the higher order component pattern. This pattern allows us to reuse
component logic throughout our application.

A Higher Order Component (HOC) is a component that receives another
component. The HOC contains certain logic that we want to apply to the
component that we pass as a parameter. After applying that logic, the HOC
returns the element with the additional logic.

Say that we always wanted to add a certain styling to multiple components in
our application. Instead of creating a style object locally each time, we can
simply create a HOC that adds the style objects to the component that we
pass to it

We just created a StyledButton and StyledText component, which are
the modified versions of the Button and Text component. They now both
contain the style that got added in the withStyles HOC!

Let’s take a look at the same DogImages example that was previously used
in the Container/Presentational pattern! The application does nothing more
than rendering a list of dog images, fetched from an API.

Let's improve the user experience a little bit. When we’re fetching the data, we
want to show a Loading… screen to the user. Instead of adding data to
the DogImages component directly, we can use a Higher Order Component
that adds this logic for us.

Let’s create a HOC called withLoader. A HOC should receive an
component, and return that component. In this case, the withLoader HOC
should receive the element which should display Loading… until the data is
fetched.

Let's create the bare minimum version of the withLoader HOC that we want to
use!

However, we don't just want to return the element it received. Instead, we
want this element to contain logic that tells us whether the data is still loading
or not.

To make the withLoader HOC very reusable, we won't hardcode the Dog
API url in that component. Instead, we can pass the URL as an argument to
the withLoader HOC, so this loader can be used on any component that
needs a loading indicator while fetching data from a different API endpoint.

A HOC returns an element, a functional component props => {} in this
case, to which we want to add the logic that allows us to display a text
with Loading… as the data is still being fetched. Once the data has been
fetched, the component should pass the fetched data as a prop.

Perfect! We just created a HOC that can receive any component 
and url.

In the useEffect hook, the withLoader HOC fetches the data from the API
endpoint that we pass as the value of url. While the data hasn't returned yet,
we return the element containing the Loading... text.

Once the data has been fetched, we set data equal to the data that has been
fetched. Since data is no longer null, we can display the element that we
passed to the HOC!

So, how can we add this behavior to our application, so it'll actually show
the Loading... indicator on the DogImages list?

In DogImages.js, we no longer want to just export the
plain DogImages component. Instead, we want to export the
"wrapped" withLoader HOC around the DogImages component.

The withLoader HOC also expects the url to know which endpoint to fetch
the data from. In this case, we want to add the Dog API endpoint.

Since the withLoader HOC returned the element with an
extra data prop, DogImages in this case, we can access the data prop in
the DogImages component.

Perfect! We now see a Loading… screen while the data is 
being fetched.

The Higher Order Component pattern allows us to provide the same logic to
multiple components, while keeping all the logic in one single place.
The withLoader HOC doesn’t care about the component or url it receives:
as long as it’s a valid component and a valid API endpoint, it’ll simply pass the
data from that API endpoint to the component that we pass.

Composing
We can also compose multiple Higher Order Components. Let's say that we
also want to add functionality that shows a Hovering! text box when the user
hovers over the DogImages list.

We need to create a HOC that provides a hovering prop to the element that
we pass. Based on that prop, we can conditionally render the text box based
on whether the user is hovering over the DogImages list.

We can now wrap the withHover HOC around the withLoader HOC.

The DogImages element now contains all props that we passed from
both withHover and withLoader. We can now conditionally render

the Hovering! text box, based on whether the value of the hovering prop
is true or false.

A well-known library used for composing HOCs is recompose. Since HOCs
can largely be replaced by React Hooks, the recompose library is no longer
maintained, thus won't be covered in this article.

 
Hooks
In some cases, we can replace the HOC pattern with React Hooks.

Let’s replace the withHover HOC with a useHover hook. Instead of having
a higher order component, we export a hook that adds
a mouseOver and mouseLeave event listener to the element. We cannot
pass the element anymore like we did with the HOC. Instead, we'll return
a ref from the hook for that should get the mouseOver and  
mouseLeave events.

The useEffect hook adds an event listener to the component, and sets the
value hovering to true or false, depending on whether the user is currently
hovering over the element. Both the ref and hovering values need to be
returned from the hook: ref to add a ref to the component that should receive
the mouseOver and mouseLeave events, and hovering in order to be able to
conditionally render the Hovering! text box.

Instead of wrapping the DogImages component with the withHover HOC, we
can use the useHover hook right inside the DogImages component.

Perfect! Instead of wrapping the DogImages component with
the withHover component, we can simply use the useHover hook within the
component directly.

Generally speaking, React Hooks don't replace the HOC pattern. As the React
docs tell us, using Hooks can reduce the depth of the component tree. Using
the HOC pattern, it's easy to end up with a deeply nested component tree.

By adding a Hook to the component directly, we no longer have to wrap
components.

Using Higher Order Components makes it possible to provide the same logic
to many components, while keeping that logic all in one single place. Hooks
allow us to add custom behavior from within the component, which could
potentially increase the risk of introducing bugs compared to the HOC pattern
if multiple components rely on this behavior.

 
Best use-cases for a HOC:

• The same, uncustomized behavior needs to be used by many components
throughout the application.

• The component can work standalone, without the added custom logic.

Best use-cases for Hooks:

• The behavior has to be customized for each component that uses it.

• The behavior is not spread throughout the application, only one or a few
components use the behavior.

• The behavior adds many properties to the component

Case Study
Some libraries that relied on the HOC pattern added Hooks support after the
release. A good example of this is Apollo Client.

One way to use Apollo Client is through the graphql() higher order
component.

With the graphql() HOC, we can make data from the client  
available to components that are wrapped by the higher order 
 component! Although we can still use the graphql() HOC currently, there
are some downsides to using it.

 

 
 

When a component needs access to multiple resolvers, we need to compose
 multiple graphql() higher order components in order to do so. Composing
multiple HOCs can make it difficult to understand how the data is passed to
your components. The order of the HOCs can matter in some cases, which
can easily lead to bugs when refactoring the code.

After the release of Hooks, Apollo added Hooks support to the Apollo Client
library. Instead of using the graphql() higher order component, developers
can now directly access the data through the hooks that the library provides.

Pros
Using the Higher Order Component pattern allows us to keep logic that we
want to re-use all in one place. This reduces the risk of accidentally spreading
bugs throughout the application by duplicating code over and over, potentially
introducing new bugs each time. By keeping the logic all in one place, we can
keep our code DRY and easily enforce separation of concerns

Cons
The name of the prop that a HOC can pass to an element, can cause a
naming collision.

In this case, the withStyles HOC adds a prop called style to the element
that we pass to it. However, the Button component already had a prop
called style, which will be overwritten! Make sure that the HOC can handle
accidental name collision, by either renaming the prop or merging the props.

When using multiple composed HOCs that all pass props to the element that's
wrapped within them, it can be difficult to figure out which HOC is responsible
for which prop. This can hinder debugging and scaling an application easily.

Flyweight Pattern
Reuse existing instances when working with identical objects

The flyweight pattern is a useful way to conserve memory when we're creating
a large number of similar objects.

In our application, we want users to be able to add books. All books have
a title, an author, and an isbn number! However, a library usually doesn't have
just one copy of a book: it usually has multiple copies of the same book.

It wouldn't be very useful to create a new book instance each time if there are
multiple copies of the exact same book. Instead, we want to create multiple
instances of the Book constructor, that represent a single book.

Let's create the functionality to add new books to the list. If a book has the
same ISBN number, thus is the exact same book type, we don't want to create

an entirely new Book instance. Instead, we should first check whether this
book already exists.

If it doesn't contain the book's ISBN number yet, we'll create a new book and
add its ISBN number to the isbnNumbers set.

The createBook function helps us create new instances of one type of book.
However, a library usually contains multiple copies of the same book! Let's
create an addBook function, which allows us to add multiple copies of the
same book. It should invoke the createBook function, which returns either a
newly created Book instance, or returns the already existing instance.

In order to keep track of the total amount of copies, let's create
a bookList array that contains the total amount of books in the library.

Perfect! Instead of creating a new Book instance each time we add a copy,
we can effectively use the already existing Book instance for that particular
copy. Let's create 5 copies of 3 books: Harry Potter, To Kill a Mockingbird, and
The Great Gatsby.

Although there are 5 copies, we only have 3 Book instances!

The flyweight pattern is useful when you're creating a huge  
number of objects, which could potentially drain all available RAM. It allows us
to minimize the amount of consumed memory.

In JavaScript, we can easily solve this problem through prototypal inheritance.
Nowadays, hardware has GBs of RAM, which makes the flyweight pattern
less important.

Factory Pattern
Use a factory function in order to create objects

With the factory pattern we can use factory functions in order to create new
objects. A function is a factory function when it returns a new object without
the use of the new keyword!

Say that we need many users for our application. We can create new users
with a firstName, lastName, and email property. The factory function
adds a fullName property to the newly created object as well, which returns
the firstName and the lastName.

 
Perfect! We can now easily create multiple users by invoking
the createUser function.

The factory pattern can be useful if we're creating relatively complex and
configurable objects. It could happen that the values of the keys and values
are dependent on a certain environment or configuration. With the factory
pattern, we can easily create new objects that contain the custom keys and
values!

Pros
The factory pattern is useful when we have to create multiple smaller objects
that share the same properties. A factory function can easily return a custom
object depending on the current environment, or user-specific configuration.

Cons
In JavaScript, the factory pattern isn't much more than a function that returns
an object without using the new keyword. ES6 arrow functions allow us to
create small factory functions that implicitly return an object each time.

However, in many cases it may be more memory efficient to create new
instances instead of new objects each time.

Compound Pattern
Create multiple components that work together to perform a single

task

In our application, we often have components that belong to each other.
They're dependent on each other through the shared state, and share logic
together. You often see this with components like select, dropdown
components, or menu items. The compound component pattern allows you to
create components that all work together to perform a task.

Context API
Let's look at an example: we have a list of squirrel images! Besides just
showing squirrel images, we want to add a button that makes it possible for
the user to edit or delete the image. We can implement a FlyOut component
that shows a list when the user toggles the component.

Within a FlyOut component, we essentially have three things:

• The FlyOut wrapper, which contains the toggle button and the list

• The Toggle button, which toggles the List

• The List , which contains the list of menu items

Using the Compound component pattern with React's Context API is perfect
for this example!

First, let's create the FlyOut component. This component keeps the state,
and returns a FlyOutProvider with the value of the toggle to all
the children it receives.

We now have a stateful FlyOut component that can pass the value
of open and toggle to its children!

Let's create the Toggle component. This component simply renders the
component on which the user can click in order to toggle the menu.

In order to actually give Toggle access to the FlyOutContext provider, we
need to render it as a child component of FlyOut! We could just simply
render this as a child component. However, we can also make
the Toggle component a property of the FlyOut component!

This means that if we ever want to use the FlyOut component in any file, we
only have to import FlyOut!

Just a toggle is not enough. We also need to have a List with list items,
which open and close based on the value of open.

 
 
 

The List component renders its children based on whether the value
of open is true or false. Let's make List and Item a property of
the FlyOut component, just like we did with the Toggle component.

We can now use them as properties on the FlyOut component! In this case,
we want to show two options to the user: Edit and Delete. Let's create
a FlyOut.List that renders two FlyOut.Item components, one for
the Edit option, and one for the Delete option.

Perfect! We just created an entire FlyOut component without adding any
state in the FlyOutMenu itself!

The compound pattern is great when you're building a component library.
You'll often see this pattern when using UI libraries like Semantic UI.

React.Children.map
We can also implement the Compound Component pattern by mapping over
the children of the component. We can add the open and toggle properties to
these elements, by cloning them with the additional props.

All children components are cloned, and passed the value of open and toggle.
Instead of having to use the Context API like in the previous example, we now
have access to these two values through props.

Pros
Compound components manage their own internal state, which they share
among the several child components. When implementing a compound
component, we don't have to worry about managing the state ourselves.

When importing a compound component, we don't have to explicitly import the
child components that are available on that component.

Cons
When using the React.children.map to provide the values, the
component nesting is limited. Only direct children of the parent component will
have access to the open and toggle props, meaning we can't wrap any of
these components in another component.

 
Cloning an element with React.cloneElement performs a shallow merge.
Already existing props will be merged together with the new props that we
pass. This could end up in a naming collision, if an already existing prop has
the same name as the props we're passing to the React.cloneElement
method. As the props are shallowly merged, the value of that prop will be
overwritten with the latest value that we pass.

Command Pattern
Decouple methods that execute tasks by sending commands to a

commander

With the Command Pattern, we can decouple objects that execute a certain
task from the object that calls the method.

Let's say we have an online food delivery platform. Users can place, track,
and cancel orders.

On the OrderManager class, we have access to
the placeOrder, trackOrder and cancelOrder methods. It would be
totally valid JavaScript to just use these methods directly!

However, there are downsides to invoking the methods directly on
the manager instance. It could happen that we decide to rename certain
methods later on, or the functionality of the methods change.

Say that instead of calling it placeOrder, we now rename it to addOrder!
This would mean that we would have to make sure that we don't call
the placeOrder method anywhere in our codebase, which could be very
tricky in larger applications.

Instead, we want to decouple the methods from the manager object, and
create separate command functions for each command!

Let's refactor the OrderManager class: instead of having
the placeOrder, cancelOrder and trackOrder methods, it will have one
single method: execute. This method will execute any command it's given.

Each command should have access to the orders of the manager, which we'll
pass as its first argument.

 

 
 

We need to create three Commands for the order manager:

• PlaceOrderCommand

• CancelOrderCommand

• TrackOrderCommand

 
 
 

 
 
 

 
 

Perfect! Instead of having the methods directly coupled to  
the OrderManager instance, they're now separate, decoupled functions that
we can invoke through the execute method that's available on
the OrderManager.

Pros
The command pattern allows us to decouple methods from the object that
executes the operation. It gives you more control if you're dealing with
commands that have a certain lifespan, or commands that should be queued
and executed at specific times. 

Cons
The use cases for the command pattern are quite limited, and often adds
unnecessary boilerplate to an application.

Rendering content on the web can be done in many ways today. The decision
on how and where to fetch and render content is key to the performance of an
application. The available frameworks and libraries can be used to implement
different rendering patterns like Client-Side Rendering, Static Rendering,
Hydration, Progressive Rendering and Server-Side Rendering. It is important
to understand the implications of each of these patterns before we can decide
which is best suited for our application.

The Chrome team has encouraged developers to consider static rendering or
server-side rendering over a full rehydration approach. Over time, progressive
loading and rendering techniques by default may help strike a good balance of
performance and feature delivery when using a modern framework

The following sections will provide a guideline on measuring the performance
requirements for an application with respect to web rendering and suggest
patterns that best satisfy each of these requirements. Subsequently, we will
explore each pattern in-depth and learn how it can be implemented. We will
also talk a bit about Next.js which can be used to implement these patterns.
However, before we go into the available patterns or Next.js, let's take a look
at how we got here and what were the drivers that resulted in the creation of
the React framework and Next.js.

A brief history of web rendering
Web technologies have been continuously evolving to support changing
application requirements. The building blocks for all websites HTML, CSS and

JavaScript have also evolved over time to support changing requirements and
utilize browser advancements.

In the early 2000's we had sites where HTML content was rendered
completely by the server. Developers relied on server-side scripting languages
like PHP and ASP to render HTML. Page reloads were required for all key
navigations and JavaScript was used by clients minimally to hide/show or
enable/disable HTML elements.

In 2006, Ajax introduced the possibility of Single-Page Applications (SPA),
Gmail being the most popular example. Ajax allowed developers to make
dynamic requests to the server without loading a new page. Thus, SPAs could
be built to resemble desktop applications. Soon developers started using
JavaScript to fetch and render data. JavaScript libraries and frameworks were
created that could be used to build the view layer functionality in the MVC
framework. Client-side frameworks like JQuery, Backbone.js and AngularJS
made it easier for developers to build core features using JavaScript.

React was introduced in 2013 as a flexible framework for building user
interfaces and UI components and provided a base for developing both single-
page web and mobile applications. From 2015 to 2020 the React ecosystem
has evolved to include supporting data-flow architecture libraries (Redux),
CSS frameworks (React-Bootstrap), routing libraries and mobile application
framework (React Native). However, there are some drawbacks of a pure
Client-Side rendering framework. As a result, developers have started
exploring new ways to get the best of both the Client-side and Server-side
rendering worlds. 

Rendering - Key Performance Indicators
Before we talk about drawbacks, let us understand how we could measure the
performance of a rendering mechanism. A basic understanding of the
following terms will help us to compare the different patterns discussed here.

Some important notes about these performance parameters are as follows. 

• A large JavaScript bundle could increase how long a page takes to reach
FCP and LCP. The user will be required to wait for some time to go from a
mostly blank page to a page with content loaded.

• Larger JavaScript bundles also affect TTI and TBT as the page can only
become interactive once the minimal required JavaScript is loaded and
events are wired.

• The time required for the first byte of content to reach the browser (TTFB)
is dependent on the time taken by the server to process the request.

Acronym Description

TTFB Time to First Byte - the time between clicking a link and the first bit of content coming
in.

FP First Paint - First time any content becomes visible to the user or the time when the
first few pixels are painted on the screen

FCP First Contentful Paint - Time when all the requested content becomes visible

LCP Largest Contentful Paint - Time when the main page content becomes visible. This
refers to the largest image or text block visible within the viewport.

TTI Time to Interactive - Time when the page becomes interactive e.g., events are wired
up, etc.

TBT Total Blocking Time - The total amount of time between FCP and TTI.

https://web.dev/time-to-first-byte/
https://developer.mozilla.org/en-US/docs/Glossary/First_paint
https://web.dev/fcp/
https://web.dev/lcp/
https://web.dev/tti/
https://web.dev/tbt/

• Techniques such as preload, prefetch and script attributes can affect the
above parameters as different browsers interpret them differently. It is
helpful to understand the loading and execution priorities assigned by the
browser for such attributes before using them.

 
We can now use these parameters to understand what exactly each pattern
has to offer with respect to rendering requirements.

Patterns - A Quick Look  

Client-Side Rendering (CSR) and Server-Side Rendering (SSR) form the two
extremes of the spectrum of choices available for rendering. The other
patterns listed in the following illustration use different approaches to provide
some combination of features borrowed from both CSR and SSR.

We will explore each of these patterns in detail. Before that, however, let us
talk about Next.js which is a React-based framework. Next.js is relevant to our
discussion because it can be used to implement all of the following patterns.

• SSR

• Static SSR (experimental flag)
• SSR with Rehydration
• CSR with Prerendering also known as Automatic Static Optimization
• Full CSR

based framework. Next.js is relevant to our discussion because it can be used
to implement all of the following patterns. 

Conclusion
 
We have now covered four patterns that are essentially variations of SSR.
These variations use a combination of techniques to lower one or more of the
performance parameters like TTFB (Static and Incremental Static Generation),
TTI (Progressive Hydration) and FCP/FP (Streaming). The patterns build upon
existing client-side frameworks like React and allow for some sort of
rehydration to achieve the interactivity levels of CSR. Thus, we have multiple
options to achieve the ultimate goal of combining both SSR and CSR benefits.

Summary 

Depending on the type of the application or the page type, some of the
patterns may be more suitable than the others. The following chart revisits,
summarizes and compares the highlights of each pattern that we discussed in
the previous sections and provides use cases for each.

Overview of Next.js
Vercel's framework for hybrid React applications

Next.js, created by Vercel, is a framework for hybrid React applications. It is
often difficult to understand all the different ways you might load content.
Next.js abstracts this to make it as easy as possible. The framework allows
you to build scalable, performant React code and comes with a zero-config
approach. This allows developers to focus on building features.

Let us explore the Next.js features that are relevant to our discussion

Basic Features
Pre-rendering

By default, Next.js generates the HTML for each page in advance and not on
the client-side. This process is called pre-rendering. Next.js ensures that
JavaScript code required to make the page fully interactive gets associated
with the generated HTML. This JavaScript code runs once the page loads. At
this point, React JS works in a Shadow DOM to ensure that the rendered
content matches with what the React application would render without actually
manipulating it. This process is called hydration.

Each page is a React component exported from a .js, .jsx, .ts,
or .tsx file in the pages directory. The route is determined based on the file
name. E.g., pages/about.js corresponds to the route /about. Next.js
supports pre-rendering through both Server-Side Rendering (SSR) and Static
generation. You can also mix different rendering methods in the same app

https://nextjs.org/docs/basic-features/pages#pre-rendering
https://blog.somewhatabstract.com/2020/03/16/hydration-and-server-side-rendering/

where some pages are generated using SSR and others using Static
generation. Client-side rendering may also be used to render certain sections
of these pages.

Data Fetching

Next.js supports data fetching with both SSR and Static generation. Following
functions in the Next.js framework make this possible.

• getStaticProps

• Used with Static generation to render data
• getStaticPaths

• Used with Static generation to render dynamic routes
• getServerSideProps

• Applicable to SSR

Static File Serving

Static files like images can be served under a folder called public in the root
directory. The same image may then be referenced in the tag code on
different pages using the root URL. E.g., src=/logo.png.

 
Automatic Image Optimization

Next.js implements Automatic Image Optimization which allows for resizing,
optimizing, and serving images in modern formats when the browser supports
it. Thus, large images are resized for smaller viewports when required. Image
optimization is implemented by importing the Next.js Image component which

https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-rendering
https://nextjs.org/docs/basic-features/static-file-serving
https://nextjs.org/docs/basic-features/image-optimization

is an extension of the HTML element. To use the Image component, it
should be imported as follows.

The image component can be served on the page using the following code.

Routing

Next.js supports routing through the pages directory. Every .js file in this
directory or its nested subdirectories becomes a page with the corresponding
route. Next.js also supports the creation of dynamic routes using named
parameters where the actual document displayed is determined by the value
of the parameter.

For example, a page pages/products/[pid].js, will get matched to
routes like /post/1 with pid=1 as one of the query parameters. Linking to
these dynamic routes on other pages is also supported in Next.js

https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/docs/api-reference/next/link#if-the-route-has-dynamic-segments
https://nextjs.org/docs/api-reference/next/link#if-the-route-has-dynamic-segments

Code Splitting

Code splitting ensures that only the required JavaScript is sent to the client
which helps to improve performance. Next.js supports two types of code
splitting.

• Route-based: This is implemented by default in Next.js. When a user
visits a route, Next.js only sends the code needed for the initial route.
The other chunks are downloaded as required when the user navigates
around the application. This limits the amount of code that needs to be
parsed and compiled at once thereby improving the page load times.

• Component-based: This type of code splitting allows splitting large
components into separate chunks that can be lazy-loaded when
required. Next.js supports component-based code splitting
through dynamic import(). This allows you to import JavaScript modules
(including React components) dynamically and load each import as a
separate chunk.

https://nextjs.org/docs/advanced-features/dynamic-import

Client-side Rendering
Render your application's UI on the client

 
In Client-Side Rendering (CSR) only the barebones HTML container for a
page is rendered by the server. The logic, data fetching, templating and
routing required to display content on the page is handled by JavaScript code
that executes in the browser/client. CSR became popular as a method of
building single-page applications. It helped to blur the difference between
websites and installed applications.
To better appreciate the benefits provided by other patterns, let us first take a
deeper look at Client-Side Rendering (CSR) and find out which are the
situations where it works great and what are its drawbacks.

Consider this simple example for showing and updating the current time on a
page using React.

The HTML consists of just a single root div tag. Content display and updates
on the other hand are handled completely in JavaScript. There is no round trip
to the server and rendered HTML is updated in-place. Here time could be
replaced by any other real-time information like exchange rates or stock prices
obtained from an API and displayed without refreshing the page or a round trip
to the server.

JavaScript bundles and Performance
As the complexity of the page increases to show images, display data from a
data store and include event handling, the complexity and size of the
JavaScript code required to render the page will also increase. CSR resulted
in large JavaScript bundles which increased the FCP and TTI of the page.

 
As shown in the above illustration, as the size of bundle.js increases, the FCP
and TTI are pushed forward. This implies that the user will see a blank screen
for the entire duration between FP and FCP.

Client-side React - Pros and Cons 

With React most of the application logic is executed on the client and it
interacts with the server through API calls to fetch or save data. Almost all of
the UI is thus generated on the client. The entire web application is loaded on
the first request. As the user navigates by clicking on links, no new request is
generated to the server for rendering the pages. The code runs on the client
to change the view/data. 
 
CSR allows us to have a Single-Page Application that supports navigation
without page refresh and provides a great user experience. As the data
processed to change the view is limited, routing between pages is generally
faster making the CSR application seem more responsive. CSR also allows
developers to achieve a clear separation between client and server code.  
Despite the great interactive experience that it provides, there are a few
pitfalls to this CSR. 
 
 
1. SEO considerations: Most web crawlers can interpret server rendered
websites in a straight-forward manner. Things get slightly complicated in the
case of client-side rendering as large payloads and a waterfall of network
requests (e.g for API responses) may result in meaningful content not being
rendered fast enough for a crawler to index it. Crawlers may understand
JavaScript but there are limitations. As such, some workarounds are required
to make a client-rendered website SEO friendly. 

2. Performance: With client-side rendering, the response time during
interactions is greatly improved as there is no round trip to the server.
However, for browsers to render content on client-side the first time, they have
to wait for the JavaScript to load first and start processing. Thus users will
experience some lag before the initial page loads. This may affect the user
experience as the size of JS bundles get bigger and/or the client does not
have sufficient processing power. 

3. Code Maintainability: Some elements of code may get repeated across
client and server (APIs) in different languages. In other cases, clean
separation of business logic may not be possible. Examples of this could
include validations and formatting logic for currency and date fields. 

4. Data Fetching: With client-side rendering, data fetching is usually event-
driven. The page could initially be loaded without any data. Data may be
subsequently fetched on the occurrence of events like page-load or button-
clicks using API calls. Depending on the size of data this could add to the
load/interaction time of the application. 

The importance of these considerations may be different across applications.
Developers are often interested in finding SEO friendly solutions that can
serve pages faster without compromising on the interaction time. Priorities
assigned to the different performance criteria may be different based on
application requirements. Sometimes it may be enough to use client- side
rendering with some tweaks instead of going for a completely different pattern.

Improving CSR performance 

Since performance for CSR is inversely proportional to the size of the
JavaScript bundle, the best thing we can do is structure our JavaScript code
for optimal performance. Following is a list of pointers that could help.

1. Budgeting JavaScript: Ensure that you have a reasonably tight JavaScript
budget for your initial page loads. An initial bundle of < 100-170KB minified
and gzipped is a good starting point. Code can then be loaded on-demand as
features are needed  
 
2. Preloading: This technique can be used to preload critical resources that
would be required by the page, earlier in the page lifecycle. Critical resources
may include JavaScript which can be preloaded by including the following
directive in the <head> section of the HTML  

This informs the browser to start loading the critical.js file before the page
rendering mechanism starts. The script will thus be available earlier and will
not block the page rendering mechanism thereby improving the performance.

1. Lazy loading: With lazy loading, you can identify resources that are non-
critical and load these only when needed. Initial page load times can be
improved using this approach as the size of resources loaded initially is

reduced. For example., a chat widget component would generally not be
needed immediately on page load and can be lazy loaded. 

2. Code Splitting: To avoid a large bundle of JavaScript code, you could start
splitting your bundles. Code-Splitting is supported by bundlers
like Webpack where it can be used to create multiple bundles that can be
dynamically loaded at runtime. Code splitting also enables you to lazy load
JavaScript resources. 

3. Application shell caching with service workers: This technique involves
caching the application shell which is the minimal HTML, CSS, and JavaScript
powering a user interface. Service workers can be used to cache the
application shell offline. This can be useful in providing a native single-page
app experience where the remaining content is loaded progressively as
needed.  

With these techniques, CSR can help to provide a faster Single-Page
Application experience with a decent FCP and TTI. Next, we will see what is
available at the other end of the spectrum with Server-Side Rendering.

Server-side Rendering
Generate HTML to be rendered on the server in response to a user

request

Server-side rendering (SSR) is one of the oldest methods of rendering web
content. SSR generates the full HTML for the page content to be rendered in
response to a user request. The content may include data from a datastore or
external API.

The connect and fetch operations are handled on the server. HTML required
to format the content is also generated on the server. Thus, with SSR we can
avoid making additional round trips for data fetching and templating. As such,
rendering code is not required on the client and the JavaScript corresponding
to this need not be sent to the client.

With SSR every request is treated independently and will be processed as a
new request by the server. Even if the output of two consecutive requests is
not very different, the server will process and generate it from scratch. Since
the server is common to multiple users, the processing capability is shared by
all active users at a given time.

Classic SSR Implementation
Let us see how you would create a page for displaying the current time using
classic SSR and JavaScript.

index.html

Note how this is different from the CSR code that provides the same output.
Also note that, while the HTML is rendered by the server, the time displayed
here is the local time on the client as populated by the JavaScript
function tick(). If you want to display any other data that is server specific,
e.g., server time, you will need to embed it in the HTML before it is rendered.
This means it will not get refreshed automatically without a round trip to the
server.
 

SSR - Pros and Cons
 
Executing the rendering code on the server and reducing JavaScript offers the
following advantages. 

Lesser JavaScript leads to quicker FCP and TTI

In cases where there are multiple UI elements and application logic on the
page, SSR has considerably less JavaScript when compared to CSR. The

index.js

time required to load and process the script is thus
lesser. FP, FCP and TTI are shorter and FCP = TTI. With SSR, users will not
be left waiting for all the screen elements to appear and for it to become
interactive.

Provides additional budget for client-side JavaScript 

Development teams are required to work with a JS budget that limits the
amount of JS on the page to achieve the desired performance. With SSR,
since you are directly eliminating the JS required to render the page, it creates
additional space for any third party JS that may be required by the application.

SEO enabled 

Search engine crawlers are easily able to crawl the content of an SSR
application thus ensuring higher search engine optimization on the page.
SSR works great for static content due to the above advantages. However, it
does have a few disadvantages because of which it is not perfect for all
scenarios. 

Slow TTFB

Since all processing takes place on the server, the response from the server
may be delayed in case of one or more of the following scenarios
• Multiple simultaneous users causing excess load on the server.
• Slow network
• Server code not optimized. 

Full page reloads required for some interactions 

Since all code is not available on the client, frequent round trips to the server
are required for all key operations causing full page reloads. This could
increase the time between interactions as users are required to wait longer
between operations. A single-page application is thus not possible with SSR.
 
To address these drawbacks, modern frameworks and libraries allow
rendering on both server and client for the same application. We will go into
details of these in the following sections. First, let's look at a simpler form of
SSR with Next.js.

SSR with Next.js 

The Next.js framework also supports SSR. This pre-renders a page on the
server on every request. It can be accomplished by exporting an async
function called getServerSideProps() from a page as follows.

The context object contains keys for HTTP request and response objects,
routing parameters, querystring, locale, etc.
 

React for the Server 

React can be rendered isomorphically, which means that it can function both
on the browser as well as other platforms like the server. Thus, UI elements
may be rendered on the server using React. 

React can also be used with universal code which will allow the same code to
run in multiple environments. This is made possible by using Node.js on the

server or what is known as a Node server. Thus, universal JavaScript may be
used to fetch data on the server and then render it using isomorphic React.

Let us take a look at the react functions that make this possible.

This function returns an HTML string corresponding to the React element. The
HTML can then be rendered to the client for a faster page load.

The renderToString() function may be used
with ReactDOM.hydrate(). This will ensure that the rendered HTML is
preserved as-is on the client and only the event handlers attached after load.

To implement this, we use a .js file on both client and server corresponding
to every page. The .js file on the server will render the HTML content, and
the .js file on the client will hydrate it.

Assume you have a React element called App which contains the HTML to be
rendered defined in the universal app.js file. Both the server and client-side
React can recognize the App element. 

The ipage.js file on the server can have the code:

The constant App can now be used to generate the HTML to be rendered.
The ipage.js on the client side will have the following to ensure that the
element App is hydrated.

Static Rendering
Deliver pre-rendered HTML content that was generated when the site

was built

Based on our discussion on SSR, we know that a high request processing
time on the server negatively affects the TTFB. Similarly, with CSR, a large
JavaScript bundle can be detrimental to the FCP, LCP and TTI of the
application due to the time taken to download and process the script.

Static rendering or static generation (SSG) attempts to resolve these issues
by delivering pre-rendered HTML content to the client that was generated
when the site was built.

A static HTML file is generated ahead of time corresponding to each route that
the user can access. These static HTML files may be available on a server or
a CDN and fetched as and when requested by the client.

Static files may also be cached thereby providing greater resiliency. Since the
HTML response is generated in advance, the processing time on the server is
negligible thereby resulting in a faster TTFB and better performance. In an
ideal scenario, client-side JS should be minimal and static pages should
become interactive soon after the response is received by the client. As a
result, SSG helps to achieve a faster FCP/TTI

Basic Structure 

As the name suggests, static rendering is ideal for static content, where the
page need not be customized based on the logged-in user (e.g personalized
recommendations). Thus static pages like the ‘About us', ‘Contact
us', Blog pages for websites or product pages for e-commerce apps, are ideal
candidates for static rendering. Frameworks like Next.js, Gatsby, and
VuePress support static generation. Let us start with this simple Next.js
example of static content rendering without any data.

.
When the site is built, this page will be pre-rendered into an HTML
file about.html accessible at the route /about.
 

SSG with Data 

Static content like that in 'About us' or 'Contact us' pages may be rendered as-
is without getting data from a data-store. However, for content like individual
blog pages or product pages, the data from a data-store has to be merged
with a specific template and then rendered to HTML at build time.

pages/about.js

The number of HTML pages generated will depend on the number of blog
posts or the number of products respectively. To get to these pages, you may
also have listing pages which will be HTML pages that contain a categorized
and formatted list of data items. These scenarios can be addressed using
Next.js static rendering. We can generate listing pages or individual item
pages based on the available items. Let us see how. 

Listing Page - All Items  
Generation of a listing page is a scenario where the content to be displayed
on the page depends on external data. This data will be fetched from the
database at build time to construct the page. In Next.js this can be achieved
by exporting the function getStaticProps() in the page component. The
function is called at build time on the build server to fetch the data. The data
can then be passed to the page's props to pre-render the page component.

The function will not be included in the client-side JS bundle and hence can
even be used to fetch the data directly from a database.

Individual Details Page - Per Item
In the above example, we could have an individual detailed page for each of
the products listed on the listing page. These pages could be accessed by
clicking on the corresponding items on the listing page or directly through
some other route.

Assume we have products with product ids 101,102 103, and so on. We need
their information to be available at routes /products/101, /products/102, /
products/103 etc. To achieve this at build time in Next.js we can use the
function getStaticPaths() in combination with dynamic routes.
We need to create a common page component products/[id].js for this and
export the function getStaticPaths() in it. The function will return all possible
product ids which can be used to pre-render individual product pages at build
time. The following Next.js skeleton available here shows how to structure the
code for this.

The details on the product page may be populated at build time by using the
function getStaticProps for the specific product id. Note the use of the fallback:
false indicator here. It means that if a page is not available corresponding to a
specific route or product Id, the 404 error page will be shown.
Thus we can use SSG to pre-render many different types of pages.

pages/products/[id].js

Key Considerations
As discussed, SSG results in a great performance for websites as it cuts down
the processing required both on the client and the server. The sites are also
SEO friendly as the content is already there and can be rendered by web-
crawlers with no extra effort. While performance and SEO make SSG a great
rendering pattern, the following factors need to be considered when assessing
the suitability of SSG for specific applications.
 
1. A large number of HTML files: Individual HTML files need to be generated
for every possible route that the user may access. For example, when using it
for a blog, an HTML file will be generated for every blog post available in the
data store. Subsequently, edits to any of the posts will require a rebuild for the
update to be reflected in the static HTML files. Maintaining a large number of
HTML files can be challenging. 
 
2. Hosting Dependency: For an SSG site to be super-fast and respond
quickly, the hosting platform used to store and serve the HTML files should
also be good. Superlative performance is possible if a well-tuned SSG website
is hosted right on multiple CDNs to take advantage of edge-caching. 

3. Dynamic Content: An SSG site needs to be built and re-deployed every
time the content changes. The content displayed may be stale if the site has
not been built + deployed after any content change. This makes SSG
unsuitable for highly dynamic content.

Incremental Static
Generation

Update static content after you have built your site

 

Static Generation (SSG) addresses most of the concerns of SSR and CSR
but is suitable for rendering mostly static content. It poses limitations when the
content to be rendered is dynamic or changing frequently. 

Think of a growing blog with multiple posts. You wouldn't possibly want to
rebuild and redeploy the site just because you want to correct a typo in one of
the posts. Similarly, one new blog post should also not require a rebuild for all
the existing pages. Thus, SSG on its own is not enough for rendering large
websites or applications. 

The Incremental Static Generation (iSSG) pattern was introduced as an
upgrade to SSG, to help solve the dynamic data problem and help static sites
scale for large amounts of frequently changing data. iSSG allows you to
update existing pages and add new ones by pre-rendering a subset of pages
in the background even while fresh requests for pages are coming in. 

Sample Code 

iSSG works on two fronts to incrementally introduce updates to an existing
static site after it has been built.
1. Allows addition of new pages
2. Allows updates to existing pages also known as Incremental Static
“Re"generation

Adding New pages

The lazy loading concept is used to include new pages on the website after
the build. This means that the new page is generated immediately on the first
request. While the generation takes place, a fallback page or a loading
indicator can be shown to the user on the front-end. Compare this to the SSG
scenario discussed earlier for individual details page per product. The 404
error page was shown here as a fallback for non-existent pages.

Let us now look at the Next.js code required for lazy-loading the non-existent
page with iSSG.

pages/products/[id].js

 
Here, we have used fallback: true. Now if the page corresponding to a
specific product is unavailable, we show a fallback version of the page, eg., a
loading indicator as shown in the Product function above. Meanwhile, Next.js
will generate the page in the background. Once it is generated, it will be
cached and shown instead of the fallback page. The cached version of the
page will now be shown to any subsequent visitors immediately upon request.
For both new and existing pages, we can set an expiration time for when
Next.js should revalidate and update it. This can be achieved by using the
revalidate property as shown in the following section.
 
 

Update Existing pages  

To re-render an existing page, a suitable timeout is defined for the page. This
will ensure that the page is revalidated whenever the defined timeout period
has elapsed. The timeout could be set to as low as 1 second. The user will
continue to see the previous version of the page, till the page has finished
revalidation. Thus, iSSG uses the stale-while-revalidate strategy where the
user receives the cached or stale version while the revalidation takes place.
The revalidation takes place completely in the background without the need
for a full rebuild.

Let us go back to the example for generating a static listing page for products
based on the data in the database. To make it serve a relatively dynamic list of
products, we will include the code to set the timeout for rebuilding the page.
This is what the code will look like after including the timeout.

The code to revalidate the page after 60 seconds is included in
the getStaticProps() function. When a request comes in the available static
page is served first. Every one minute the static page gets refreshed in the
background with new data. Once generated, the new version of the static file
becomes available and will be served for any new requests in the subsequent
minute. This feature is available in Next.js 9.5 and above.

pages/products/[id].js

iSSG Advantages 

iSSG provides all the advantages of SSG and then some more. The following
list covers them in detail. 

1. Dynamic data: The first advantage is obviously why iSSG was envisioned.
Its ability to support dynamic data without a need to rebuild the site. 

2. Speed: iSSG is at least as fast as SSG because data retrieval and
rendering still takes place in the background. There is little processing
required on the client or the server. 

3. Availability: A fairly recent version of any page will always be available
online for users to access. Even if the regeneration fails in the background,
the old version remains unaltered. 

4. Consistent: As the regeneration takes place on the server one page at a
time, the load on the database and the backend is low and performance is
consistent. As a result, there are no spikes in latency. 

5. Ease of Distribution: Just like SSG sites, iSSG sites can also be
distributed through a network of CDN's used to serve pre-rendered web
pages. 

Progressive Hydration
Delay loading JavaScript for less important parts of the page

A server rendered application uses the server to generate the HTML for the
current navigation. Once the server has completed generating the HTML
contents, which also contains the necessary CSS and JSON data to display
the static UI correctly, it sends the data down to the client. Since the server
generated the markup for us, the client can quickly parse this and display it on
the screen, which produces a fast First Contentful Paint!

Although server rendering provides a faster First Contentful Paint, it doesn't
always provide a faster Time To Interactive. The necessary JavaScript in order
to be able to interact with our website hasn't been loaded yet.
Buttons may look interactive, but they aren't interactive (yet). The handlers will
only get attached once the JavaScript bundle has
been loaded and processed. This process is called hydration: React checks
the current DOM nodes, and hydrates the nodes with the corresponding
JavaScript.

The time that the user sees non-interactive UI on the screen is also refered to
as the uncanny valley: although users may think that they can interact with the
website, there are no handlers attached to the components yet. This can be a
frustrating experience for the user, as the UI may can like it's frozen!

It can take a while before the DOM components that were received from the
server are fully hydrated. Before the components can be hydrated, the

JavaScript file needs to be loaded, processed, and executed. Instead of
hydrating the entire application at once, like we did previously, we can
also progressively hydrate the DOM nodes. Progressive hydration makes it
possible to individually hydrate nodes over time, which makes it possible to
only request the minimum necessary JavaScript.

By progressively hydrating the application, we can delay the hydration of less
important parts of the page. This way, we can reduce the amount of
JavaScript we have to request in order to make the page interactive, and
only hydrate the nodes once the user needs it. Progressive hydration also

helps avoid the most common SSR Rehydration pitfalls where a server-
rendered DOM tree gets destroyed and then immediately rebuilt.

Progressive hydration allows us to only hydrate components based on a
certain condition, for example when a component is visible in the viewport.

In the following example, we have a list of users that gets
progressively hydrated once the list is in the viewport. The purple flash shows
when the component has been hydrated!

Progressive Hydration Implementation  
 
In the section on implementing SSR with React, we discussed client-side
hydration for an app that is rendered on the server. Hydration allows client-
side React to recognize the ReactDOM components that are rendered on the
server and attach events to these components. Thus, it introduces continuity
and seamlessness for an SSR app to function like a CSR app once it is

client.js

server.js

available on the client. 

For all components on the page to become interactive via hydration, the React
code for these components should be included in the bundle that gets
downloaded to the client. Highly interactive SPAs that are largely controlled by
JavaScript would need the entire bundle at once. However, mostly static
websites with a few interactive elements on the screen, may not need all
components to be active immediately. For such websites sending a huge
React bundle for each component on the screen becomes an overhead.

Progressive Hydration solves this problem by allowing us to hydrate only
certain parts of the application when the page loads. The other parts are
hydrated progressively as required.

With Progressive hydration, the "You may also like" and "Other content"
components can be hydrated later.

Instead of initializing the entire application at once, the hydration step begins
at the root of the DOM tree, but the individual pieces of the server-rendered
application are activated over a period of time. The hydration process may be
arrested for various branches and resumed later when they enter the viewport
or based on some other trigger. Note that, the loading of resources required to
perform each hydration is also deferred using code-splitting techniques,
thereby reducing the amount of JavaScript required to make pages
interactive.

The idea behind progressive hydration is to provide a great performance by
activating your app in chunks. Any progressive hydration solution should also
take into account how it will impact the overall user experience. You cannot
have chunks of screen popping up one after the other but blocking any activity
or user input on the chunks that have already loaded. Thus, the requirements
for a holistic progressive hydration implementation are as follows. 

• Allows usage of SSR for all components.
• Supports splitting of code into individual components or chunks.
• Supports client side hydration of these chunks in a developer defined

sequence.
• Does not block user input on chunks that are already hydrated.\
• Allows usage of some sort of a loading indicator for chunks with deferred

hydration.
 
 

React concurrent mode will address all these requirements once it is available
to all. It allows React to work on different tasks at the same time and switch
between them based on the given priority. When switching, a partially
rendered tree need not be committed, so that the rendering task can continue
once React switches back to the same task. 

Concurrent mode can be used to implement progressive hydration. In this
case, hydration of each of the chunks on the page, becomes a task for React
concurrent mode. If a task of higher priority like user input needs to be
performed, React will pause the hydration task and switch to accepting the
user input. Features like lazy(), Suspense() allow you to use declarative
loading states. These can be used to show the loading indicator while chunks
are being lazy loaded. SuspenseList() can be used to define the priority for
lazy loading components.This demo shared by Dan Abramov shows
concurrent mode in action and implements progressive hydration.
 
React concurrent mode can also be combined with another React feature
Server Components. This will allow you to refetch components from the
server and render them on the client as they stream in instead of waiting for
the whole fetch to finish. Thus, the client's CPU is put to work even as we wait
for the network fetch to finish. 

While the React concurrent mode based progressive hydration
implementation is still getting ready, many other contenders for a partial
hydration implementation are available. Progressive hydration was
demonstrated at Google I/O '19. The demo for progressive hydration showed
the use of a Hydrator component to hydrate selected sections of the page.

Multiple implementations have spawned from this for different client-side
frameworks. Implementations are also available for Vue, Angular and Next.js.
Let is take a quick look at one such method using Preact and Next.js
 
This is a POC for partial hydration using
• pool-attendant-preact: A library that implements partial hydration

with preact x.
• next-super-performance: A Next.js plugin that uses this library to

improve client-side performance. 

The pool-attendant-preact library includes an API
called withHydration which lets you mark your more interactive components
for hydration. These will be hydrated first. You can use this to define your
page content as follows.

The component HydratedTeaser in columns 2 and 3 will be hydrated first. You
can now hydrate the remaining components on the client using
the hydrate() API which is also included in the library.

The component HydrationData is used to write serialized props to the client. It
will ensure that the required props are available to the components being
hydrated.

Pros and Cons 

Progressive hydration provides server-side rendering with client-side
hydration while also minimizing the cost of hydration. Following are some of
the advantages that can be gained from this. 

1. Promotes code-splitting: Code-splitting is an integral part of progressive
hydration because chunks of code need to be created for individual
components that are lazy- loaded. 

2. Allows on-demand loading for infrequently used parts of the
page: There may be components of the page that are mostly static, out of the
viewport and/or not required very often. Such components are ideal
candidates for lazy loading. Hydration code for these components need not be
sent when the page loads. Instead, they may be hydrated based on a trigger. 

3. Reduces bundle size: Code-splitting automatically results in a reduction of
bundle size. Less code to execute on load helps reduce the time between
FCP and TTI. 

On the downside, progressive hydration may not be suitable for dynamic apps
where every element on the screen is available to the user and needs to be
made interactive on load. This is because, if developers do not know where
the user is likely to click first, they may not be able to identify which
components to hydrate first.

Streaming Server-Side
Rendering

Generate HTML to be rendered on the server in response to a user
request

We can reduce the TTI while still server rendering our application
by streaming server rendering the contents of our application. Instead of
generating one large HTML file containing the necessary markup for the
current navigation, we can split it up into smaller chunks! Node streams allow
us to data into the response object, which means that we can continuously
send data down to the client. The moment the client receives the chunks of
data, it can start rendering the contents.

React's built-in renderToNodeStream makes it possible for us to send our
application in smaller chunks. As the client can start painting the UI when it's
still receiving data, we can create a very performant first-load experience.
Calling the hydrate method on the received DOM nodes will attach the
corresponding event handlers, which makes the UI interactive!

Let's say we have an app that shows the user thousands of cat facts in
the App component!

The App component gets stream rendered using the built-
in renderToNodeStream method. The initial HTML gets sent to the response
object alongside the chunks of data from the App component,

This data contains useful information that our app has to use in order to
render the contents correctly, such as the title of the document and a
stylesheet. If we were to server render the App component using
the renderToString method, we would have had to wait until the application
has received all data before it can start loading and processing this metadata.
To speed this up, renderToNodeStream makes it possible for the app to start
loading and processing this information as it's still receiving the chunks of data
from the App component!

Concepts

Like progressive hydration, streaming is another rendering mechanism that
can be used to improve SSR performance. As the name suggests, streaming
implies chunks of HTML are streamed from the node server to the client as
they are generated. As the client starts receiving "bytes" of HTML earlier even
for large pages, the TTFB is reduced and relatively constant. All major
browsers start parsing and rendering streamed content or the partial response
earlier. As the rendering is progressive, it results in a fast FP and FCP.
Streaming responds well to network backpressure. If the network is clogged
and not able to transfer any more bytes, the renderer gets a signal and stops
streaming till the network is cleared up. Thus, the server uses less memory
and is more responsive to I/O conditions. This enables your Node.js server to
render multiple requests at the same time and prevents heavier requests from
blocking lighter requests for a long time. As a result, the site stays responsive
even in challenging conditions.

React for streaming

React introduced support for streaming in React 16 released in 2016. The
following API's were included in the ReactDOMServer to support streaming.

• ReactDOMServer.renderToNodeStream(element): The output
HTML from this function is the same
as ReactDOMServer.renderToNodeStream(element) but is in a
Node.js readablestream format instead of a string. The function will only
work on the server to render HTML as a stream. The client receiving this

stream can subsequently call ReactDOM.hydrate() to hydrate the page
and make it interactive. 

• ReactDOMServer.renderToStaticNodeStream(element): This
corresponds
to ReactDOMServer.renderToStaticNodeStream(element). The
HTML output is the same but in a stream format. It can be used for
rendering static, non-interactive pages on the server and then streaming
them to the client. 

The readable stream output by both functions can emit bytes once you start
reading from it. This can be achieved by piping the readable stream to a
writable stream such as the response object. The response object
progressively sends chunks of data to the client while waiting for new chunks
to be rendered.

A comparison between TTFB and First Meaningful Paint for normal SSR Vs
Streaming is available in the following image.

 
 

Pros and cons  
 
Streaming aims to improve the speed of SSR with React and provides the
following benefits

1. Performance Improvement: As the first byte reaches the client soon after
rendering starts on the server, the TTFB is better than that for SSR. it is also
more consistent irrespective of the page size. Since the client can start
parsing HTML as soon as it receives it, the FP and FCP are also lower. 

2. Handling of Backpressure: Streaming responds well to network
backpressure or congestion and can result in responsive websites even under
challenging conditions. 

3. Supports SEO: The streamed response can be read by search engine
crawlers, thus allowing for SEO on the website. 

It is important to note that streaming implementation is not a simple find-
replace from renderToString to renderToNodeStream(). There are
cases where the code that works with SSR may not work as-is with streaming.
Following are some examples where migration may not be easy.
 
1. Frameworks that use the server-render-pass to generate markup that
needs to be added to the document before the SSR-ed chunk. Examples are
frameworks that dynamically determine which CSS to add to the page in a
preceding <style> tag, or frameworks that add elements to the
document <head> while rendering. A workaround for this has been
discussed here.

 
2. Code, where renderToStaticMarkup is used to generate the page
template and renderToString calls are embedded to generate dynamic
content. Since the string corresponding to the component is expected in these
cases, it cannot be replaced by a stream. An example of such code
provided here is as follows.

Both Streaming and Progressive Hydration can help to bridge the  
 gap between a pure SSR and a CSR experience. Let us now compare all the
patterns that we have explored and try to understand their suitability for
different situations.

React Server Components
Server Components compliment SSR, rendering to an intermediate

abstraction without needing to add to the JavaScript bundle

 
The React team are working on zero-bundle-size React Server Components,
which aim to enable modern UX with a server-driven mental model. This is
quite different to Server-side Rendering (SSR) of components and could result
in significantly smaller client-side JavaScript bundles.

The direction of this work is exciting, and while it isn't yet production ready, is
worth keeping on your radar. The RFC is worth reading as is Dan and
Lauren's talk worth watching for more detail.

Server-side rendering limitations 

Today's Server-side rendering of client-side JavaScript can be suboptimal.
JavaScript for your components is rendered on the server into an HTML
string. This HTML is delivered to the browser, which can appear to result in a
fast First Contentful Paint or Largest Contentful Paint.

However, JavaScript still needs to be fetched for interactivity which is often
achieved via a hydration step. Server-side rendering is generally used for the
initial page load, so post-hydration you're unlikely to see it used again.
 
 

Note: While it's true that one could build a server-only React app leveraging
SSR and avoiding hydrating on the client at all, heavy interactivity in the
model often involves stepping outside of React. The hybrid model that Server
Components enable will allow deciding this on a per-component basis.
With React Server Components, our components can be refetched regularly.
An application with components which rerender when there is new data can
be run on the server, limiting how much code needs to be sent to the client.

 
Server Components 

React's new Server Components compliment Server-side rendering, enabling
rendering into an intermediate abstraction format without needing to add to
the JavaScript bundle. This both allows merging the server-tree with the client-
side tree without a loss of state and enables scaling up to more components. 

Server Components are not a replacement for SSR. When paired together,
they support quickly rendering in an intermediate format, then having Server-

side rendering infrastructure rendering this into HTML enabling early paints to
still be fast. We SSR the Client components which the Server components
emit, similar to how SSR is used with other data-fetching mechanisms.
 
This time however, the JavaScript bundle will be significantly smaller. Early
explorations have shown that bundle size wins could be significant (-18-29%),
but the React team will have a clearer idea of wins in the wild once further
infrastructure work is complete.

 
Automatic Code-Splitting 

It's been considered a best-practice to only serve code users need as they
need it by using code-splitting. This allows you to break your app down into
smaller bundles requiring less code to be sent to the client. Prior to Server
Components, one would manually use React.lazy() to define "split-points" or
rely on a heuristic set by a meta-framework, such as routes/pages to create
new chunks.

Some of the challenges with code-splitting are:
• Outside of a meta-framework (like Next.js), you often have to tackle this

optimization manually, replacing import statements with dynamic imports.
• It might delay when the application begins loading the component

impacting the user-experience.

Server Components introduce automatic code-splitting treating all normal
imports in Client components as possible code-split points. They also allow
developers to select which component to use much earlier (on the server),
allowing the client to fetch it earlier in the rendering process.

Will Server Components replace Next.js SSR?
No. They are quite different. Initial adoption of Server Components will
actually be experimented with via meta-frameworks such as Next.js as
research and experimentation continue.

To summarize a good explanation of the differences between Next.js SSR and
Server Components from Dan Abramov: 

• Code for Server Components is never delivered to the client. In many
implementations of SSR using React, component code gets sent to the
client via JavaScript bundles anyway. This can delay interactivity.

• Server components enable access to the back-end from anywhere in
the tree. When using Next.js, you're used to accessing the back-end via
getServerProps() which has the limitation of only working at the top-
level page. Random npm components are unable to do this.

• Server Components may be refetched while maintaining Client-side
state inside of the tree. This is because the main transport mechanism is
much richer than just HTML, allowing the refetching of a server-rendered
part (e.g such as a search result list) without blowing away state inside (e.g
search input text, focus, text selection)

 
Some of the early integration work for Server Components will be done via a
webpack plugin which:
• Locates all Client components
• Creates a mapping between IDs => chunk URLs
• A Node.js loader replaces imports to Client components with references to

this map.
• Some of this work will require deeper integrations (e.g with pieces such as

Routing) which is why getting this to work with a framework like Next.js will
be valuable.

 
As Dan notes, one of the goals of this work is to enable meta-frameworks to
get much better.

Selective Hydration
How to use combine streaming server-side rendering with a new

approach to hydration, selective hydration

In previous articles, we covered how SSR with hydration can improve user
experience. React is able to (quickly) generate a tree on the server using
the renderToString method that the react-dom/server library provides, which
gets sent to the client after the entire tree has been generated. The rendered
HTML is non interactive, until the JavaScript bundle has been fetched and
loaded, after which React walks down the tree to hydrate and attaches the
handlers. However, this approach can lead to some performance issues due
to some limitations with the current implementation.  
 
Before the server-rendered HTML tree is able to get sent to the client, all
components need to be ready. This means that components that may rely on
an external API call or any process that could cause some delays, might end
up blocking smaller components from being rendered quickly.

Besides a slower tree generation, another issue is the fact that React only
hydrates the tree once. This means that before React is able to hydrate any of
the components, it needs to have fetched the JavaScript for all of the
components before it’s able to hydrate any of them. This means that smaller
components (with smaller bundles) have to wait for the larger components’s
code to be fetched and loaded, until React is able to hydrate anything on your
website. During this time, the website remained non-interactive.

React 18 solves these problems by allowing us to combine streaming server-
side rendering with a new approach to hydration: Selective Hydration!

Instead of using the renderToString method that we covered earlier, we can
now stream render HTML using the new pipeToNodeStream method on the
server. 

This method, in combination with the createRoot method and Suspense,
makes it possible to start streaming HTML without having to wait for the larger
components to be ready. This means that we can lazy-load components when
using SSR, which wasn’t (really) possible before!

index.js

The Comments component, which earlier slowed down the tree generation
and TTI, is now wrapped in Suspense. This tells React to not let this
component slow down the rest of the tree generation. Instead, React inserts
the fallback components as the initially rendered HTML, and continues to
generate the rest of the tree before it's sent to the client.

server.js

In the meantime, we're still fetching the external data that we need for
the Comments component.

Selective hydration makes it possible to already hydrate the components that
were sent to the client, even before the Comments component has been sent!

Once the data for the Comments component is ready, React starts streaming
the HTML for this component, as well as a small <script> to replace the
fallback loader. 

React starts the hydration after the new HTML has been injected.

React 18 fixes some issues that people often encountered when using SSR
with React.

Streaming rendering allows you to start streaming components as soon as
they're ready, without risking a slower FCP and TTI due to components that
might take longer to generate on the server.

Components can be hydrated as soon as they're streamed to the client, since
we no longer have to wait for all JavaScript to load to start hydrating and can
start interacting with the app before all components have been hydrated.

Optimizing for the Core
Web Vitals on a Next.js app

A case study optimizing a Next.js app for performance

Next.js by Vercel is a React meta-framework that enhances the React
development experience. It enables the creation of production-ready apps and
supports static site generation and server-side rendering, easy configuration,
fast refresh, image optimization, file-system routing, and optimized code-
splitting and bundling.

To evaluate how to optimize a React + Next.js application using third-party
dependencies, we created the Next.js Movies app. This is a non-trivial movie
browsing application and a fully-featured client of TMDB. It incorporates a rich
set of features that allow you to search and browse through a comprehensive
and categorized movie listing, view details and manage personal favorites
through membership and authentication.

Subsequently, the Next.js Movies app was the benchmark that we used to
implement a series of performance tweaks and identify the ones that were
beneficial from an overall user experience perspective. Today, I want to talk
about the performance improvement achieved on the whole and dig into each
of the tweaks that we tried with their outcomes.

 
Cumulative Improvements 

We were able to achieve a significant aggregate performance improvement
with all optimizations in place. This automatically translated to a better user
experience. The metrics depicted here were captured before and after the
implementation of all the code changes meant to optimize the performance.

To understand what the overall improvement implies from a user experience
perspective, take a look at the following comparison for the actual page load
experience
• Before optimization
• With a few changes
• With all optimizations

in place.

In addition to the overall performance improvement, metrics were captured
using Lighthouse and WPT after every code change for relevant pages. The
tests were repeated multiple times to eliminate any lags due to sleeping
servers or other conditions both before and after the change. The average
calculated for each parameter thus gave us a reliable value to use for our
analysis.

With that background, let's talk about every change implemented and how it
contributed to the overall performance improvement we achieved.

Packages Switched

Initially, a number of third-party React components helped to quickly
implement the different features required for the Movies app. We decided to
analyze the impact on metrics by trying other available alternatives for
individual third-party components especially those that were heavy or blocking
the main thread.

Most of these attempts were extremely fruitful in bringing down the values of
different metrics
• Using @svgr/webpack instead of Font-Awesome for SVG icons helped to

boost Speed Index by 34%, LCP by 23%, and TBT by 51%
• Using a custom-built component to replace react-burger-menu and

removing the resize-observer-polyfill from react-sicky-
box led to a reduction in bundle size by 34.28 kB (gZipped).

• React Select Search was used instead of React Select which led to a 35%
improvement in the LCP with a 100% improvement in CLS and 18% in
TBT.

• The use of React Glider instead of React Slick improved TBT by 77%.
• Usage of React Scrolling instead of native smooth scrolling provided cross-

browser compatibility for the scrolling feature.
• React Stars component was used instead of React Rating which helped to

boost TBT by 33%.

SVG icon library

SVG icons were the obvious choice for all our icon needs across the Movies
app. We initially chose Font-Awesome due to its popularity and ease of use as
a scalable vector icon library with icons that are customizable using CSS.
However, there had been concerns that Font-Awesome may be slow to load
on web pages due to the large transfer sizes when loading the library. This
affects Lighthouse performance score.

We replaced Font-Awesome with @svgr/webpack as our SVG icon provider.
Another change was to import individual icons on all our pages instead of the
library itself even if the page uses multiple icons. For example:

This helped to improve the Lighthouse score across the board. Here is a
snapshot of the score before and after the change. Also, note a difference of
almost 200 KiB in request transfer size and the change in user timings before
and after the change.

Application Menu 

The initial version of the app used react-burger-menu as an off-canvas
side-bar component to display the application menu by clicking the burger
icon. The component comes with a collection of inbuilt CSS styles and
animations that provide options to customize the menu.

An analysis of bundle sizes for react-burger-menu and the app revealed
that we could do better.

We did not need all the features included in the react-burger-menu component
and thought that a simple custom component would serve our needs just as
well.

This helped to reduce the bundle size corresponding to the burger menu
component considerably without affecting the required functionality. As seen in
the treemap analysis of the chunks before and after the change, the gzipped
size of the burger-menu chunk was 6.73 kB earlier but reduced to 879 B after
the change. The parsed size also went down from 32.74 kB to 2.14 kB. Thus,
the change helped to reduce both the download time as well as the parse time
for the chunk

Dropdown for Sort feature

The Movies app allows you to sort movies belonging to a particular genre or
starring a selected actor. You can sort by Popularity, Votes, Release Date, or
Original Title. To allow users to select a sort option, we had previously used
the react-select component. The component allows for multiple-select, search,
animation, and access to styling API using emotion. The bundle size for the
component is 27.2 kB minified and gzipped with 7 dependencies.

For the sort dropdown, we merely needed a simple single-select component
without any styling features. As such, we decided to go with the react-select-
search component. It is a lightweight component (3.2 kB minified and gzipped)
with zero dependencies. While it supports multi-select and search features,
styling features can be included by developers as required.
 
The following highlights the changes in the UI itself due to the component
change and corresponding improvement in Lighthouse performance.

Before

After

Cart Carousel

We had used the react-slick component on our movie pages that allowed
users to horizontally "glide" through the movie cast. The react-slick component
however is quite heavy when it comes to the bundle size. At 14.7 kB it comes
with 5 dependencies.

We found a lighter option in react-
glider which provided a similar carousel
feature with a smaller bundle size and inline
CSS.

https://github.com/hipstersmoothie/react-glider
https://github.com/hipstersmoothie/react-glider

We found a lighter option in r react-glider which provided a similar
carousel feature with a smaller bundle size and inline CSS.

A reduction in bundle size from 14.7 kB to 3.4 kB was quite a jump (78%
improvement) with zero impact on functionality. This change was a welcome
addition. In the future, we may rewrite this component to use CSS Scroll
Snap.

The scrolling component

The Movies App implements pagination on the movie listing pages to switch
from one page to the other. Every time the previous or next page button is
clicked, the view needs to scroll to the top of the new page. For the transition
to be smooth, we had used the native smooth scroll function as follows.

Native smooth scroll functions are however not supported across all browsers.

To allow us to animate the vertical scrolling, we decided to use a scrolling
library called react-scroll (6.8 kB gzipped). This not only helped to
recreate the same scroll effect with a small regression in performance as can
be seen in the following comparison.

 
The rating component

react-rating, the rating component that we had originally used, allows you
to customize the look by using different symbols for rating; eg., stars, circles,
thumbs-up, etc. We had used the star symbol for rating earlier and did not
need the other features that were part of the library. The cost of including the
bundle for this component was 2.6kB.

Performance
Metric

FCP
(s)

Speed
Index (s)

LCP
(s) TTI (s)

TBT
(ms)

CL
S

Performa
nce (%)

Before 0.8 3.93 2.63 1.73 16.66 0 94.33

After 0.92 3.78 2.9 2.26 66 0 92.8

% Change 15 3.81 10.26 39.63 296.15 0

The react-stars component served our purpose and we were able to show
star ratings for movies on the movie listing screen using this component too.
This component was only 2 kB minified and gzipped. We used this component
and inlined the source for further optimization.

 
Although, the library sizes do not look very different, the react-rating
component uses SVG icons for ratings while the react-stars component uses

the symbol "★". As the component gets repeated 20 times on the movie
listing page, the size of the icon/image also contributes to the overall savings
due to the component change. This is apparent from the Lighthouse scores
before and after the change.

Before

After

Although the other parameters are more or less unchanged, we noticed a
significant difference in TBT (33%). This was because the chunk that included
the rating component (react-rating package) was excluded from the long
main-thread tasks.

Other techniques used for Optimization

Experimenting with alternate libraries was one part of the performance
analysis and optimization project. We also tried other mechanisms that have
been known to enhance performance. Let's talk about what was attempted
and what worked or didn't work for us.

Code-Splitting
We used code-splitting to lazy-load the Menu component - being collapsed by
default on mobile, this was an opportunity to only do work when a user
actually needed it. We had initially tried lazy loading with the Burger Menu
sidebar component and observed some gain in performance. After we
replaced this with a custom component for the sidebar menu, we lazy-loaded
the custom component. 

We used the LazyLoadingErrorBoundary component which acts as a
wrapper for react lazy and react suspense. This ensures that the menu
component is loaded after page load. While FCP and LCP remained about the
same, there was a substantial reduction in TBT by 71% as can be seen in the
following comparison.

Performance
Metric

FCP
(s)

Speed
Index (s)

LCP
(s) TTI (s)

TBT
(ms)

CL
S

Performa
nce (%)

Before 0.86 4.2 3.46 2.53 70 0 87.66

After 0.83 3.63 3.3 1.73 20 0 90.33

% Change 3.48 13.57 4.62 31.62 71.42 0

Inline the critical, defer the non-critical
Our Lighthouse audits were consistently generating this suggestion that we
certainly needed to act upon.

CSS is a render-blocking resource, i.e., it must be loaded and processed
before the page is rendered. Some of the CSS may be required to style the
content that is visible on the initial page load. This is the critical CSS that
needs to be inlined to optimize the page. There may be other CSS that is not
required initially and can be deferred.

As part of our optimizations, we in-lined the CSS required for dark/light modes
transition which was identified as critical CSS.

As per Next.js documentation, we had initially imported all our node module
CSS files in the /pages/_app.js file. We are using two components react-
glider and react-modal-video that require CSS import from node
modules. Importing this CSS through _app.js would be render-blocking for
the app as these components are not required on all the pages.

The CSS required by these components was inlined in the files where the
component was used. For example, after optimization, the code in our cast
component includes the syntax to render the Glider along with the styles that it
uses.

 

With this change, we were able to observe a slight change of 2% to 5% in
FCP, LCP, and TTI. The performance improved from 79% to 81% for the page.

Aspect Ratio for Images
The changes we discussed so far helped us to improve the FCP, LCP, TBT,
and TTI on different pages. Let us now talk about improving the last parameter
on the Lighthouse report, the Cumulative Layout Shift (CLS). For an in-depth
understanding of CLS and its causes, refer to my article on optimizing CLS.
The Lighthouse report for the movies page before optimization gave us a clear
indication of what was causing the CLS.

Even though a CLS of 0.016 is well below the threshold, we did experience
the shift when loading the page, especially on a mobile 3G connection. So we
worked on the elements that were causing the layout shift as reported. 
Instead of setting image dimensions, we used the aspect-ratio-
boxes technique for setting the aspect ratio for images. This helps to reserve
the required space for the image while the page is still loading so that there is
no shift once the image is loaded. Using this technique we were able to bring

the CLS for the page down to 0, the image suggestions for layout shifts were
eliminated and there was a perceptible improvement in user experience.
Note: Browser support for CSS aspect ratio improved after we worked on the
Movies application, but if we were building it today we would likely use that
feature.

 
Preconnects
Preconnects allow you to provide hints to the browser on what resources are
going to be required by the page shortly. Adding "rel=preconnect" informs
the browser that the page will need to establish a connection to another
domain so that it can start the process sooner. The hints help to load
resources quicker because the browser may have already set up the
connection by the time the resources are required.

There was a small but discernible difference in the values of performance
parameters after this change as tabulated here.

Optimize the API call sequence

Being a TMDB client, the movies app makes several API calls to get the list of
movies, genres, cast, and other details along with related images. The
principle used to optimize the API call sequence should ensure that calls to
fetch data to be used for rendering the main page area are not put off until the
other API calls have finished. With this in mind, we changed our sequence of
execution as follows.

Performance
Metric

FCP
(s)

Speed
Index (s) LCP (s) TTI (s)

TBT
(ms) CLS

Performan
ce (%)

Before 0.9 3.9 3.43 2.93 60 0 88

After 0.83 3.5 2.86 2.63 53.33 0 93.33

% Change 7.77 10.25 16.61 10.23 6.67 0

Preloading API response

When a user visits the home page of the Movies app for the first time, we
already know that we will be showing them page 1 of the ‘Popular' movies list.
The actual list itself comes from the TMDB API, but the API call can be
created based on these two values Genre = "popular" and page = 1

With this knowledge, we were able to preload the data for the home page as
follows.

Before After
Fetch the metadata like genres and
configuration while the API call for movie
posters was put off until they were finished.

Fetch the metadata (used for
populating the side menu) and
simultaneously fetch the movie
poster data.

Fetch the movie poster data Render the home page with the
fetched movie poster data.

Render the home page with the fetched

movie poster data.

This was used only on the home page as we cannot predict what the users
will click/pick on the other pages. If the preloaded data is not used, it will be a
waste of resources resulting in a warning like this which can be seen in
Chrome Dev Tools - "The resource https://api.themoviedb.org/3/movie/
popular?api_key=844dba0bfd8f3a4f3799f6130ef9e335&page=1 was preloaded

using link preload but not used within a few seconds from the window's

load event. Please make sure it has an appropriate as value and it is

preloaded intentionally.”

The LCP and TTI improved by 12.65% and 7.76% respectively after this
change while the overall performance went up from 91% to 94% for the home
page.

Preloading the logo and the TMDB trademark

The logo and TMDB trademark are displayed on all pages and we found the
performance after preloading these to be improved. These were preloaded
using a media query.

This resulted in a 5-6% improvement in FCP and Speed Index.

Making the site responsive

The movies app uses Next.js SSR to render the wrapper for the UI. Since the
app can be accessed on both desktop and mobile devices, responsive design
was essential. Combining responsive design with SSR has been a challenge
because:

1. The server where the content is rendered does not recognize the
client window element. Thus methods
like window.matchmedia() cannot be used to determine client details.
Additionally, client hints are not supported across all browsers.

2. Using CSS media query would result in rendering all of the elements
regardless of whether they are used either on desktop or mobile.

To address these challenges we used the @artsy/fresnel library. The
approach used here is that the server would still render all elements in the
DOM with CSS breakpoints. Only components that match the breakpoints
would be mounted. We were thus able to avoid duplicate markup and
unnecessary rendering  
 
The following images compare the difference in markup rendered before and
after the change for the same content.

Before

After

Following is the change in Lighthouse performance observed after the
change.

While there is some regression in FCP, LCP, TTI, and TBT, the speed index
and performance have improved. The chunk size has increased due to the
contribution of the artsy/fresnel bundle. However, the reduction in markup may
make this a good trade-off.

Enable Google Analytics

Google analytics was included on the site so that we can get a better picture
of how the app engages with its users. Some regression was expected after
including Google Analytics. The change in performance was captured as per
our process to track performance variations for the code changes. There was
some regression as expected due to the inclusion of the analytics component.

Performance
Parameter

FCP
(s)

Speed
Index (s)

LCP
(s)

TTI
(s)

TBT
(ms) CLS

Performa
nce (%)

Before 0.93 3.73 2.6 2.63 60 0.001 94.33

After 1.06 3.23 2.66 2.66 63.33 0 95

% Change 13.97 13.4 2.3 1.14 5.55 100

Ideas that did not help

Based on the Lighthouse report's feedback, there were some alternatives and
ideas that we tried but gave up because there were no performance benefits.

1. We are using the react-lazyload package for lazy loading images.
This was listed in the long main thread tasks, along with
the scrolling and rating components.

Performance
Parameter

FCP
(s)

Speed
Index (s)

LCP
(s)

TTI
(s)

TBT
(ms)

CL
S

Perform
ance (%)

Before 0.8 3.4 2.53 1.8 26.66 0 95.66

After 0.95 3.7 2.93 2.13 35 0 92.75

% Change 18.75 8.82 15.61 18.05 31.28 0

We tried replacing this with native image lazy-loading. Based on subsequent
testing, we noticed that TBT increased from 10 ms to 117 ms for a negligible
reduction in LCP. It is possible that native image lazy loading loads a few
images that are near the viewport while react lazy-load only loads those that
are within the viewport causing this difference in TBT.

Today, one could also use the Next.js Image Component to implement this
functionality. However, since the component uses JS internally, using an
HTML + CSS-based solution may perform better.

1. Before setting the aspect ratio for images, we had tried to improve CLS by
setting image dimensions. Even though it is one of the recommended
approaches for reducing CLS, setting image dimensions did not work so
well as the aspect ratio technique that we finally implemented.

2. Tried out server-side rendering to reduce LCP but it brought about
regression rather than improvement. This could be because the movie-
related data and images required to render pages were fetched through
TMDB API calls. This caused the server response to be slow because all
API requests/responses were processed on the server. 

Ideas that might help

There are a few additional opportunities for performance improvement that we
might try out in the future. These range from replacing individual components
with lighter alternatives to implementing full-fledged SSR. Here's what we
could explore to check if it contributes to the performance of the app.

1. Implement responsive images with preloading as discussed here
2. Introduce caching using service-workers.
3. Currently, the _app.js file is slightly bloated as it includes redux-related

logic eg., actions, reducers, etc. Individual pages do not need all of these
files when landing. We could try eliminating redux or apply code-splitting
for redux logic.

4. Implement SSR without redux and try SSR caching.
5. Replace react-modal-video with a lightweight alternative.
6. Use keen-slider instead of react-slider.
7. Use react-cool-inview instead of react-lazyload.
8. Apply lazy-loading/code-splitting techniques to load third party libraries

using different React loading patterns
9. Image post-processing to preload the first few images like the hero-image.
10. Replace the SVG loading spinner with something that uses CSS

animation.
11. Use lighter components that use HTML and CSS for rendering images

instead of component that uses JavaScript internally.

 
Conclusion

Performance optimization is an ongoing process. Over the last 6 months, we
covered a lot of ground with these changes to not only incorporate but also
test many recommended best practices. We could always do more. However,
at some point, you have to decide whether the gain in performance is justified
by time spent on testing different alternatives. The loop will of course be
repeated as and when new features are added. We however wanted to

capture our takeaways from this journey so that they serve as a manual for
our future endeavors as well as yours.
With special thanks to Anton Karlovskiy and Leena Sohoni-Kasture for their
contributions to this article.

Islands Architecture
The islands architecture encourages small, focused chunks of

interactivity within server-rendered web pages

•  

he islands architecture encourages small, focused chunks of interactivity
within server-rendered web pages. The output of islands is progressively
enhanced HTML, with more specificity around how the enhancement occurs.
Rather than a single application being in control of full-page rendering, there
are multiple entry points. The script for these "islands" of interactivity can be
delivered and hydrated independently, allowing the rest of the page to be just
static HTML.

Loading and processing excess JavaScript can hurt performance. However,
some degree of interactivity and JavaScript is often required, even in primarily
static websites. We have discussed variations of Server Side Rendering
(SSR) that enable you to build applications that try to find the balance
between:

• Interactivity comparable to Client-Side Rendered (CSR) applications

• SEO benefits that are comparable to SSR applications.

The core principle for SSR is that HTML is rendered on the server and
shipped with necessary JavaScript to rehydrate it on the client. Rehydration is
the process of regenerating the state of UI components on the client-side after
the server renders it. Since rehydration comes at a cost, each variation of
SSR tries to optimize the rehydration process. This is mainly achieved

https://www.patterns.dev/posts/islands-architecture/#0
https://www.patterns.dev/posts/rendering-patterns/#conclusion
https://www.patterns.dev/posts/rendering-patterns/#conclusion
https://addyosmani.com/blog/rehydration/

by partial hydration of critical components or streaming of components as they
get rendered. However, the net JavaScript shipped eventually in the above
techniques remains the same.

The term Islands architecture was popularized by Katie Sylor-Miller and Jason
Miller to describe a paradigm that aims to reduce the volume of JavaScript
shipped through "islands" of interactivity that can be independent delivered on
top of otherwise static HTML. Islands are a component-based architecture
that suggests a compartmentalized view of the page with static and dynamic
islands. The static regions of the page are pure non-interactive HTML and do
not need hydration. The dynamic regions are a combination of HTML and
scripts capable of rehydrating themselves after rendering.

https://www.patterns.dev/posts/progressive-hydration/
https://www.patterns.dev/posts/ssr/
https://jasonformat.com/islands-architecture/

Let us explore the Islands architecture in further detail with the different
options available to implement it at present.

Islands of dynamic components
Most pages are a combination of static and dynamic content. Usually, a page
consists of static content with sprinkles of interactive regions that can be
isolated. For example;

• Blog posts, news articles, and organization home pages contain text and
images with interactive components like social media embeds and chat.

• Product pages on e-commerce sites contain static product descriptions
and links to other pages on the app. Interactive components such as
image carousels and search are available in different regions of the
page.

• A typical bank account details page contains a list of static transactions
with filters providing some interactivity.

Static content is stateless, does not fire events, and does not need
rehydration after rendering. After rendering, dynamic content (buttons, filters,
search bar) has to be rewired to its events. The DOM has to be regenerated
on the client-side (virtual DOM). This regeneration, rehydration, and event
handling functions contribute to the JavaScript sent to the client.

The Islands architecture facilitates server-side rendering of pages with all of
their static content. However, in this case, the rendered HTML will include
placeholders for dynamic content. The dynamic content placeholders contain

https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom

self-contained component widgets. Each widget is similar to an app and
combines server-rendered output and JavaScript used to hydrate the app on
the client.

In progressive hydration, the hydration architecture of the page is top-down.
The page controls the scheduling and hydration of individual components.
Each component has its hydration script in the Islands architecture that
executes asynchronously, independent of any other script on the page. A
performance issue in one component should not affect the other.

Implementing Islands
The Island architecture borrows concepts from different sources and aims to
combine them optimally. Template-based static site generators such
as Jekyll and Hugo support the rendering of static components to pages. Most
modern JavaScript frameworks also support isomorphic rendering, which
allows you to use the same code to render elements on the server and client.

Jason's post suggests the use of requestIdleCallback() to implement a
scheduling approach for hydrating components. Static isomorphic rendering
and scheduling of component level partial hydration can be built into a
framework to support Islands architecture. Thus, the framework should

• Support static rendering of pages on the server with zero JavaScript.

• Support embed of independent dynamic components via placeholders in
static content. Each dynamic component contains its scripts and can
hydrate itself using requestIdleCallback() as soon as the main thread is
free.

• Allow isomorphic rendering of components on the server with hydration
on the client to recognize the same component at both ends.

You can use one of the out-of-the-box options discussed next to implement
this.

Frameworks

Different frameworks today are capable of supporting the Islands architecture.
Notable among them are

https://jekyllrb.com/
https://gohugo.io/
https://en.wikipedia.org/wiki/Isomorphic_JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback

• Marko: Marko is an open-source
framework developed and maintained by eBay to improve server
rendering performance. It supports Islands architecture by combining
streaming rendering with automatic partial hydration. HTML and other
static assets are streamed to the client as soon as they are ready.
Automatic partial hydration allows interactive components to hydrate
themselves. Hydration code is only shipped for interactive components,
which can change the state on the browser. It is isomorphic, and the
Marko compiler generates optimized code depending on where it will run
(client or server). 

• Astro: Astro is a static site builder that can generate lightweight static
HTML pages from UI components built in other frameworks such as
React, Preact, Svelte, Vue, and others. Components that need client-side
JavaScript are loaded individually with their dependencies. Thus it
provides built-in partial hydration. Astro can also lazy-load components
depending on when they become visible. We have included a sample
implementation using Astro in the next section. 

• Eleventy + Preact: Markus Oberlehner demonstrates the use of
Eleventy, a static site generator with isomorphic Preact components that
can be partially hydrated. It also supports lazy hydration. The component
itself declaratively controls the hydration of the component. Interactive

components use a WithHydration wrapper so that they are hydrated
on the client. 

https://markojs.com/
https://tech.ebayinc.com/engineering/the-future-of-marko/
https://tech.ebayinc.com/engineering/ebay-launches-marko-5/
https://medium.com/@mlrawlings/maybe-you-dont-need-that-spa-f2c659bc7fec
https://astro.build/
https://codepen.io/jonneal/full/ZELvMvw
https://www.patterns.dev/posts/islands-architecture/#heading=h.zkdqbcq8za4
https://www.patterns.dev/posts/islands-architecture/#heading=h.zkdqbcq8za4
https://markus.oberlehner.net/blog/building-partially-hydrated-progressively-enhanced-static-websites-with-isomorphic-preact-and-eleventy/#lazy-hydration

Note that Marko and Eleventy pre-date the definition of Islands provided by
Jason but contain some of the features required to support it. Astro, however,
was built based on the definition and inherently supports the Islands
architecture. In the following section, we demonstrate the use of Astro for a
simple blog page example discussed earlier.

Sample implementation

The following is a sample blog page that we have implemented using Astro.
The page SamplePost imports one interactive component, SocialButtons. This
component is included in the HTML at the required position via markup.

SamplePost.astro

The SocialButtons component is a Preact component with its HTML, and
corresponding event handlers included.

The component is embedded in the page at run time and hydrated on the
client-side so that the click events function as required.

SocialButtons.tsx

Astro allows for a clean separation between HTML, CSS, and scripts and
encourages component-based design. It is easy to install and start building
websites with this framework.

Pros and Cons
The Islands architecture combines ideas from different rendering techniques
such as server-side rendering, static site generation, and partial hydration.
Some of the potential benefits of implementing islands are as follows.

• Performance: Reduces the amount of JavaScript code shipped to the
client. The code sent only consists of the script required for interactive
components, which is much less than the script needed to recreate the
virtual DOM for the entire page and rehydrate all the elements on the

page. The smaller size of JavaScript automatically corresponds to faster
page loads and Time to Interactive (TTI).

Comparisons for Astro with documentation websites created for Next.js and
Nuxt.js have shown an 83% reduction in JavaScript code. Other users have
also reported performance improvements with Astro.

Image Courtesy: https://divriots.com/blog/our-experience-with-astro/

• SEO: Since all of the static content is rendered on the server; pages are
SEO friendly.

• Prioritizes important content: Key content (especially for blogs, news
articles, and product pages) is available almost immediately to the user.
Secondary functionality for interactivity is usually required after
consuming the key content becomes available gradually.

• Accessibility: The use of standard static HTML links to access other
pages helps to improve the accessibility of the website.

https://docs.astro.build/comparing-astro-vs-other-tools#nextjs-vs-astro
https://divriots.com/blog/our-experience-with-astro/
https://divriots.com/blog/our-experience-with-astro/

• Component-based: The architecture offers all advantages of
component-based architecture, such as reusability and maintainability.

Despite the advantages, the concept is still in a nascent stage. The limited
support results in some disadvantages.

• The only options available to developers to implement Islands are to use
one of the few frameworks available or develop the architecture yourself.
Migrating existing sites to Astro or Marko would require additional efforts.

• Besides Jason's initial post, there is little discussion available on the
idea.

• New frameworks claim to support the Islands architecture making it
difficult to filter the ones which will work for you.

• The architecture is not suitable for highly interactive pages like social
media apps which would probably require thousands of islands.

The Islands architecture concept is relatively new but likely to gain speed due
to its performance advantages. It underscores the use of SSR for rendering
static content while supporting interactivity through dynamic components with
minimal impact on the page's performance. We hope to see many more
players in this space in the future and have a wider choice of implementation
options available. 

https://github.com/bensmithett/tropical-utils/tree/main/packages/tropical-islands

Optimize your
loading sequence

Learn how to optimize your loading sequence to improve how quickly
your app is usable

Note: This article is heavily influenced by insights from the Aurora team in
Chrome, in particular Shubhie Panicker who has been researching the optimal
loading sequence.

In every successful web page load, some critical components and resources
become available at just the right time to give you a smooth loading
experience. This ensures users perceive the performance of the application to
be excellent. This excellent user experience should generally also translate to
passing the Core Web Vitals.

Key metrics such as First Content Paint, Largest Contentful Paint, First Input
Delay, etc used to measure performance are directly dependent on the
loading sequence of critical resources. For example, the page cannot have its
LCP if a critical resource like the hero image is not loaded. This article talks
about the relationship between the loading sequence of resources and web
vitals. Our objective is to provide clear guidance on how to optimize the
loading sequence for better web vitals.

Before we establish an ideal loading sequence, let us first try to understand
why it is so difficult to get the loading sequence right.

Why is optimal loading difficult to achieve?  

We have had the unique opportunity to work on performance analysis for
many of our partner's websites. We identified multiple similar issues that
plagued the efficient loading of pages across different partner sites.

There is often a critical gap between developers' expectations and how the
browser prioritizes resources on the page. This often results in sub-optimal
performance scores. We analyzed further to discover what caused this gap
and the following points summarize the essence of our analysis.

Sub-optimal sequencing
Web Vitals optimization requires not only a good understanding of what each
metrics stands for but also the order in which they occur and how they relate
to different critical resources. FCP occurs before LCP which occurs before
FID. As such, resources required for achieving FCP should be prioritized over
those required by LCP followed by those required by FID.

Resources are often not sequenced and pipelined in the correct order. This
may be because developers are not aware of the dependency of metrics on
resource loads. As a result, relevant resources are sometimes not available at
the right time for the corresponding metric to trigger. 

Examples:
a) By the time FCP fires, the hero image should be available for firing LCP. 
b) By the time LCP fires, the JavaScript (JS) should be downloaded, parsed
and ready (or already executing) to unblock interaction (FID).

 
Network/CPU Utilization
Resources are also not pipelined appropriately to ensure full CPU and
Network utilization. This results in "Dead Time" on the CPU when the process
is network bound and vice versa.

A great example of this is scripts that may be downloaded concurrently or
sequentially. As the bandwidth gets divided during concurrent download, the
total time for downloading all scripts is the same for both sequential and
concurrent downloads. If you download scripts concurrently, the CPU is
underutilized during the download. However, if you download the scripts
sequentially, the CPU can start processing the first one as soon as it is
downloaded. This results in better CPU and Network utilization.
 
Third-Party (3P) Products
3P libraries are often required to add common features and functionality to the
website. Third parties include ads, analytics, social widgets, live chat, and
other embeds that power a website. A third party library comes with its own
JavaScript, images, fonts etc.

3P products don't usually have an incentive to optimize for and support the
consumer site's loading performance. They could have a heavy JavaScript
execution cost that delays interactivity, or gets in the way of other critical
resources being downloaded.
Developers who include 3P products may tend to focus more on the value
they add in terms of features rather than performance implications. As a
result, 3P resources are sometimes added haphazardly, without full

consideration in terms of how it fits into the overall loading sequence. This
makes them hard to control and schedule.

Platform Quirks
Browsers may differ in how they prioritize requests and implement hints.
Optimization is easier if you have a deep knowledge of the platform and its
quirks. Behavior particular to a specific browser makes it difficult to achieve
the desired loading sequence consistently.

An example of this is the preload bug on the chromium platform.
The Preload (<link rel=preload>) instruction can be used to tell the
browser to download key resources as soon as possible. It should only be
used when you are sure that the resource will be used on the current page.
The bug in Chromium causes it to behave such that requests issued
via <link rel=preload> always start before other requests seen by the
preload scanner even if those have higher priority. Issues such as these put a
wrench in optimization plans.

HTTP2 Prioritization
The protocol itself does not provide many options or knobs for adjusting the
order and priority of resources. Even if better prioritization primitives were to
be made available, there are underlying problems with HTTP2 prioritization
that make optimal sequencing difficult. Mainly, we cannot predict in what order
servers or CDN's will prioritize requests for individual resources. Some CDN's
re-prioritize requests while others implement partial, flawed, or no
prioritization.

 
Resource level optimization
Effective sequencing needs that the resources that are being sequenced to be
served optimally so that they will load quickly. Critical CSS should be inlined,
Images should be sized correctly and JS should be code-split and delivered
incrementally.

The framework itself is lacking constructs that allow code-splitting and serve
JS and data incrementally. Users must rely on one of the following to split
large chunks of 1P JS 

1. Modern React (Suspense / Concurrent mode / Data Fetching) - This is still
available for experimentation only

2. Lazy loading using dynamic imports - This is not intuitive and developers
need to manually identify the boundaries along which to split the code.

 
When code-splitting, developers need to achieve just the right granularity of
chunks because of a granularity vs performance trade-off.
 
Higher granularity is desirable because it
1. Minimizes JS needed for individual route and on subsequent user

interactions
2. Allows for caching of common dependencies. This ensures that a change

in the library doesn't require re-fetching of the entire bundle.
At the same time too much granularity when code-splitting can be bad
because too many small chunks lower compression rates for individual
chunks and affect browser performance.

Resource optimization also requires the elimination of dead or unused code.
Unnecessary or obsolete JS may be often shipped to modern browsers which
negatively affects performance. JS transpiled to ES5 and bundled with polyfills
is unnecessary for modern browsers. Libraries and npm packages are often
not published in ES module format. This makes it hard for bundlers to tree
shake and optimize.

As you might have noticed, these issues are not limited to a particular set of
resources or platforms. To work around these problems, one requires an
understanding of the entire tech stack and how different resources can be
coalesced to achieve optimal metrics. Before we define an overall optimization
strategy, let us look at how individual resource requirements can defeat our
purpose. 

More on Resources - Relations, Constraints, and
Priorities  

In the previous section, we gave a few examples of how certain resources are
required for a specific event like FCP or LCP to fire. Let us try to understand
all such dependencies first before we discuss a way to work with them.
Following is a resource-wise list of recommendations, constraints, and
gotchas that need to be considered before we define an ideal sequence.

Critical CSS
Critical CSS refers to the minimum CSS required for FCP. It is better to inline
such CSS within HTML rather than import it from another CSS file. Only the
CSS required for the route should be downloaded at any given time and all
critical CSS should be split accordingly.

If inlining is not possible, critical CSS should be preloaded and served from
the same origin as the document. Avoid serving critical CSS from multiple
domains or direct use of 3rd party critical CSS like Google Fonts. Your own
server could serve as a proxy for 3rd party critical CSS instead.

Delay in fetching CSS or incorrect order of fetching CSS could impact FCP
and LCP. To avoid this, non-inlined CSS should be prioritized and ordered
above 1P JS and ABT images on the network.

Too much inlined CSS can cause HTML bloating and long style parsing times
on the main thread. This can hurt the FCP. As such identifying what is critical
and code-splitting are essential.

Inlined CSS cannot be cached. One workaround for this is to have a duplicate
request for the CSS that can be cached. Note however, that this can result in
multiple full-page layouts which could impact FID.

Fonts
Like critical CSS, the CSS for critical fonts should also be inlined. If inlining is
not possible the script should be loaded with a preconnect specified. Delay in
fetching fonts, e.g., google fonts or fonts from a different domain can affect

FCP. Preconnect tells the browser to set up connections to these resources
earlier.

Inlining fonts can bloat the HTML significantly and delay initiating other critical
resource fetches. Font fallback may be used to unblock FCP and make the
text available. However, using font fallback can affect CLS due to jumping
fonts. It can also affect FID due to a potentially large style and layout task on
the main thread when the real font arrives.

Above the Fold (ABT) Images
This refers to images that are initially visible to the user on page load because
they are within the viewport. A special case for ABT images is the hero image
for the page. All ABT images should be sized. Unsized images hurt the CLS
metric because of the layout shift that occurs when they are fully rendered.
Placeholders for ABT images should be rendered by the server.

Delayed hero image or blank placeholders would result in a late LCP.
Moreover, LCP will re-trigger, if the placeholder size does not match with the
intrinsic size of the actual hero image and the image is not overlaid on
replacement. Ideally, there should be no impact on FCP due to ABT images
but in practice, an image can fire FCP.

Below the Fold (BTF) Images
These are images that are not immediately visible to the user on page load.
As such they are ideal candidates for lazy loading. This ensures that they do
not contend with 1P JS or important 3P needed on the page. If BTF images
were to be loaded before 1P JS or important 3P resources, FID would get
delayed.

1P JavaScript
1P JS impacts the interaction readiness of the application. It can get delayed
on the network behind images & 3P JS and on the main thread behind 3P JS.
As such it should start loading before ABT images on the network and execute
before 3P JS on the main thread. 1P JS does not block FCP and LCP in
pages that are rendered on the server-side.

3P JavaScript
3P sync script in HTML head could block CSS & font parsing and therefore
FCP. Sync script in the head also blocks HTML body parsing. 3P script
execution on the main thread can delay 1P script execution and push out
hydration and FID. As such, better control is required for loading 3P scripts.

These recommendations and constraints would generally apply irrespective of
the tech stack and browser. Note, how something that is a recommendation
can also become a constraint. For example, inlining fonts and CSS is great,
but too much of it can cause bloating. The trick is to find a balance between
‘Too little Too late' and ‘Too much Too soon’.

The following chart gives us an understanding of Chrome's priorities for
loading different resources. Combining the information on priorities and the
discussion on resource types will help to better understand the loading
sequence that is proposed in the next section.

 
 
 
 

Following are the key takeaways from this table. 

• CSS and Fonts are loaded with the highest priority. This should help us
prioritize critical CSS and fonts.

• Scripts get different priorities based on where they are in the document and
whether they are async, defer, or blocking. Blocking scripts requested
before the first image (or an image early in the document) are given higher
priority over blocking scripts requested after the first image is fetched.  
 
Async/defer/injected scripts, regardless of where they are in the document,
have the lowest priority. Thus we can prioritize different scripts by using the
appropriate attributes for async and defer. 

• Images that are visible and in the viewport have a higher priority (Net:
Medium) than those that are not in the viewport (Net: Lowest). This helps
us prioritize ABT images over BTF images.

 
Let us now see how all of the above details can be put together to define an
optimal loading sequence. 

What is the Ideal Loading Sequence  
With that background, we can now propose a loading sequence that should
optimize the loading of both 1P and 3P resources. The proposed sequence
uses Next.js Server Side Rendering (SSR) as a reference for optimization. 

Current State
Based on our experience, the following is the typical loading sequence we
have observed for a Next.js SSR application before optimization.

Following is an example of one such sequence from one of our partner sites.
The positives and negatives about the loading sequence are included as
annotations.

CSS CSS is preloaded before JS but is not inlined

JavaScript 1P JS is preloaded
3P JS is not managed and can still be render-blocking anywhere in the document.

Fonts Fonts are neither in-lined nor do they use preconnect
Fonts are loaded via external stylesheets which delays the loading
Fonts may or may not be display blocking.

Images Hero images are not prioritized
Both ABT and BTF images are not optimized

Proposed Sequence without 3P  
Following is a loading sequence that takes into account all of the constraints
discussed previously. Let us first tackle a sequence without 3P. We will then
see how 3P resources can be interleaved in this sequence. Note that, we
have considered Google Fonts as 1P here. 

Sequence of events on the
main browser thread

Sequence of requests on
the network.

1 Parse the HTML Small inline 1P scripts. 1

2 Execute small inline 1P
scripts

Inlined critical CSS (Preload if
external)

2

Inlined critical Fonts
(Preconnect if external)

3

3 Parse FCP resources
(critical CSS, font)

LCP Image (Preconnect if
external)

4

First Contentful Paint (FCP) Fonts (triggered from inline
font-css (Preconnect)

5

4 Render LCP resources
(Hero image, text)

Non-critical (async) CSS 6

First-party JS for interactivity 7

Above the fold images
(preconnect)

8

Largest Contentful Paint
(LCP)

Below the fold images 9

5 Render important ABT
images

Visually Complete

While some parts of this sequence may be intuitive, the following points will
help to justify it further.
1. We recommend avoiding preload as much as possible because it forces

manual preload on every preceding resource and also causes manual
curation of ordering. Preload should be especially avoided on fonts, as it is
tricky to detect critical fonts.

2. Font-CSS should be ideally inlined. Fonts from another origin should be
fetched using preconnect.

3. Preconnect is recommended for all resources from another origin. This will
ensure that a connection is established in advance for downloading these
resources.

4. Non-critical CSS should be fetched before user interaction begins (FID).
This would avoid styling problems due to subsequent rendering of such
CSS.

5. Start fetching first-party JS before ABT images on the network. It will take
some time to download and parse the JS.

6. Parsing of the HTML on the main thread and download of ABT images can
continue in parallel while 1P JS is parsed.

6 Parse Non-critical
(async) CSS

7 Execute 1P JS and
hydrate

Lazy-loaded JS chunks 10

First Input Delay (FID)

Proposed Sequence with 3P
Finally, we have reached the stage where we can propose a sequence for all
key resources that are commonly loaded in a modern web application.
Following is what the sequence for events on the main browser thread and
network fetch requests will look like with 3P resources in the picture.

Sequence of events on the
main browser thread

Sequence of requests on
the network.

1 Parse the HTML FCP blocking 3P resources 1

Small inline 1P scripts. 2

2 Execute small inline 1P
scripts

Inlined critical CSS
(Preload if external)

3

3 Parse FCP blocking 3P
resources

Inlined critical Fonts
(Preconnect if external)

4

4 Parse FCP resources (critical
CSS, font)

3P personalized ABT
image required for LCP

5

First Contentful Paint
(FCP)

LCP Image (Preconnect if
external)

6

The main concern here is how do you ensure that 3P scripts are downloaded
optimally and in the required sequence.
Since the script request goes to another domain, preconnect is recommended
for the following 3P requests. This helps to optimize the download. 

#1 - FCP blocking 3P resources
#5 - 3P personalized ABT image required for LCP
#9 - 3P that must execute before first user interaction
#12 - Default 3P JS 

5 Render 3P personalized ABT
image required for LCP

Fonts (triggered from inline
font-css (Preconnect)

7

Non-critical (async) CSS 8

6 Render LCP resources (Hero
image, text)

3P that must execute
before first user interaction

9

First-party JS for
interactivity

10

Largest Contentful Paint
(LCP)

Above the fold images
(preconnect)

11

7 Render important ABT
images

Default 3P JS 12

8 Parse Non-critical (async)
CSS

9 Execute 3P required for first
user interaction

Below the fold images 13

10 Execute 1P JS and hydrate Lazy-loaded JS chunks 14

First Input Delay (FID) Less important 3P JS 15

To achieve the desired sequence, we recommend using the ScriptLoader
component for Next. This component is designed to "optimize the critical
rendering path and ensure external scripts don't become a bottleneck to
optimal page load." The feature most relevant to our discussion is Loading
Priorities. This allows us to schedule the scripts at different milestones to
support different use cases. Following are the loading priority values available
After-Interactive: Loads the specific 3P script after the next hydration. This
can be used to load Tag-managers, Ads, or Analytics scripts that we want to
execute as early as possible but after 1P scripts.
 
Before-Interactive: Loads the specific 3P script before hydration. It can be
used in cases where we want the 3P script to execute before the 1P script.
Eg., polyfill.io, bot detection, security and authentication, user consent
management (GDPR), etc.
 
Lazy-Onload: Prioritize all other resources over the specified 3P script and
lazy load the script. It can be used for CRM components like Google
Feedback or Social Network specific scripts like those used for share buttons,
comments, etc.
 
Thus, preconnect, script attributes and ScriptLoader for Next.js together can
help us get the desired sequence for all our scripts.

Conclusion
The responsibility of optimizing apps falls on the shoulders of the creators of
the platforms used as well as the developers who use it. Common issues
need to be addressed. We aim to make sequencing easier from the inside out.

A tried and tested set of recommendations for different use cases and
initiatives like the Script Loader help to achieve this for the React-Next.js
stack. The next step would be to ensure that new apps conform to the
recommendations above.
With special thanks to Leena Sohoni (Technical Analyst/Writer), for all her
contributions to this write-up.

Static Import
Import code that has been exported by another module

 
The import keyword allows us to import code that has been exported by
another module. By default, all modules we're statically importing get added to
the initial bundle. A module that is imported by using the default ES2015
import syntax, import module from 'module', is statically imported.

Let's look at an example! A simple chat app contains a Chat component, in
which we're statically importing and rendering three
components: UserProfile, a ChatList, and a ChatInput to type and
send messages! Within the ChatInput module, we're statically importing
an EmojiPicker component to show be able to show the user the emoji
picker when the user toggles the emoji.

The modules get executed as soon as the engine reaches the line on which
we import them. When you open the console, you can see the order in which
the modules have been loaded!

Since the components were statically imported, Webpack bundled the
modules into the initial bundle. We can see the bundle that Webpack creates
after building the application.

Our chat application's source code gets bundled into one
bundle: main.bundle.js. A large bundle size can affect the loading time of
our application significantly depending on the user's device and network
connection. Before the App component is able to render its contents to the
user's screen, it first has to load and parse all modules.

Luckily, there are many ways to speed up the loading time! We don't always
have to import all modules at once: maybe there are some modules that
should only get rendered based on user interaction, like the EmojiPicker in
this case, or rendered further down the page. Instead of importing all
component statically, we can dynamically import the modules after
the App component has rendered its contents and the user is able to interact
with our application.

Dynamic Import
Import parts of your code on demand

In our chat application, we have four key components: UserInfo,
ChatList, ChatInput and EmojiPicker. However, only three of these
components are used instantly on the initial page load: UserInfo,
ChatList and ChatInput

The EmojiPicker isn't directly visible, and may not even be rendered at all if
the user won't even click on the emoji in order to toggle the EmojiPicker.
This would mean that we unnecessarily added the EmojiPicker module to
our initial bundle, which potentially increased the loading time!

In order to solve this, we can dynamically import the EmojiPicker
component. Instead of statically importing it, we'll only import it when we want
to show the EmojiPicker.

An easy way to dynamically import components in React is by using React
Suspense. The React.Suspense component receives the component that
should be dynamically loaded, which makes it possible for the App component
can render its contents faster by suspending the import of the EmojiPicker  
module!

When the user clicks on the emoji, the EmojiPicker component gets
rendered for the first time. The EmojiPicker component renders
a Suspense component, which receives the lazily imported module:

the EmojiPicker in this case. The Suspense component accepts
a fallback prop, which receives the component that should get rendered while
the suspended component is still loading!

Instead of unnecessarily adding EmojiPicker to the initial bundle, we can
split it up into its own bundle and reduce the size of the initial bundle! A
smaller initial bundle size means a faster initial load: the user doesn't have to
stare at a blank loading screen for as long. The fallback component lets the
user know that our application hasn't frozen: they simply need to wait a little
while for the module to be processed and executed.

Whereas previously the initial bundle was 1.5 MiB, we've been able to
reduce it to 1.33 MiB by suspending the import of the EmojiPicker!

In the console, you can see that the EmojiPicker doesn't get executed until
we've toggled the EmojiPicker!

When building the application, we can see the different bundles that Webpack
created.

By dynamically importing the EmojiPicker component, we managed to
reduce the initial bundle size from 1.5MiB to 1.33MiB! Although the user
may still have to wait a while until the EmojiPicker has been fully loaded,
we have improved the user experience by making sure the application is
rendered and interactive while the user waits for the component to load.

Loadable Components
Server-side rendering doesn't support React Suspense (yet). A good
alternative to React Suspense is the loadable-components library, which can
be used in SSR applications.

Similar to React Suspense, we can pass the lazily imported module to
the loadable, which will only import the module once
the EmojiPicker module is being requested! While the module is being
loaded, we can render a fallback component.

Although loadable components are a great alternative to React Suspense for
SSR applications, they're also useful in CSR applications in order to suspend
the import of modules.

Import on Visibility
Load non-critical components when they are visible in the viewport

 
Besides user interaction, we often have components that aren't visible on the
initial page. A good example of this is lazy loading images that aren't directly
visible in the viewport, but only get loaded once the user scrolls.

As we're not requesting all images instantly, we can reduce the initial loading
time. We can do the same with components! In order to know whether
components are currently in our viewport, we can use the
IntersectionObserver API, or use libraries such as react-lazyload
or react-loadable-visibility to quickly add import on visibility to our
application.

Whenever the EmojiPicker is rendered to the screen, after the
user clicks on the Gif button, react-loadable-
visibility detects that the EmojiPicker element should be visible on the
screen. Only then, it will start importing the module while the user sees a
loading component being rendered.

 
The fallback component lets the user know that our application hasn't frozen:
they simply need to wait a short while for the module to be loaded, parsed,
compiled, and executed!

Import on Interaction
Load non-critical resources when a user interacts with UI requiring it

 
Your page may contain code or data for a component or resource that isn’t
immediately necessary. For example, part of the user-interface a user doesn't
see unless they click or scroll on parts of the page. This can apply to many
kinds of first-party code you author, but this also applies to third-party widgets
such as video players or chat widgets where you typically need to click a
button to display the main interface.

Loading these resources eagerly (right away) can block the main thread if
they are costly, pushing out how soon a user can interact with more critical
parts of a page. This can impact interaction readiness metrics like First Input
Delay, Total Blocking Time and Time to Interactive. Instead of loading
these resources immediately, you can load them at a more opportune
moment, such as:

• When the user clicks to interact with that component for the first time

• The component scrolls into view

• Deferring load of that component until the browser is idle
(via requestIdleCallback).

The different ways to load resources are, at a high-level:

• Eager: load resource right away (the normal way of loading scripts)

• Lazy (Route-based): load when a user navigates to a route or component

• Lazy (On interaction): load when the user clicks UI (e.g Show Chat)

• Lazy (In viewport): load when the user scrolls towards the component

• Prefetch: load prior to needed, but after critical resources are loaded

• Preload: eagerly, with a greater level of urgency

Import on interaction for first-party code should only be done if you’re unable
to prefetch resources prior to interaction. The pattern is however very relevant
for third-party code, where you generally want to defer it if non-critical to a
later point in time. This can be achieved in many ways (defer until interaction,
until the browser is idle or using other heuristics).

Lazily importing feature code on interaction is a pattern used in many contexts
we will cover in this post. One place you may have used it before is Google
Docs, where they save loading 500KB of script for the share feature by
deferring its load until user-interaction.

Another place where import-on-interaction can be a good fit is loading third-
party widgets. 

"Fake" loading third-party UI with a facade

You might be importing a third-party script and have less control over what it
renders or when it loads code. One option for implementing load-on-
interaction is straight-forward: use a facade. A facade is a simple "preview" or
"placeholder" for a more costly component where you simulate the basic
experience, such as with an image or screenshot. It’s terminology we’ve been
using for this idea on the Lighthouse team.

 
When a user clicks on the "preview" (the facade), the code for the resource is
loaded. This limits users needing to pay the experience cost for a feature if
they’re not going to use it. Similarly, facades can preconnect to necessary
resources on hover.

Third-party resources are often added to pages without full consideration for
how they fit into the overall loading of a site. Synchronously-loaded third-party
scripts block the browser parser and can delay hydration. If possible, 3P script
should be loaded with async/defer (or other approaches) to ensure 1P scripts
aren't starved of network bandwidth. Unless they are critical, they can be a
good candidate for shifting to deferred late-loading using patterns like import-
on-interaction.

 
Video Player Embeds

A good example of a "facade" is the YouTube Lite Embed by Paul Irish. This
provides a Custom Element which takes a YouTube Video ID and presents a
minimal thumbnail and play button. Clicking the element dynamically loads the
full YouTube embed code, meaning users who never click play don’t pay the
cost of fetching and processing it.

Authentication

Apps may need to support authentication with a service via a client-side
JavaScript SDK. These can occasionally be large with heavy JS execution
costs and one might rather not eagerly load them up front if a user isn’t going
to login. Instead, dynamically import authentication libraries when a user clicks
on a "Login" button, keeping the main thread more free during initial load.

Chat Widgets

Calibre app improved performance of their Intercom-based live chat by
30% through usage of a similar facade approach. They implemented a "fake"

fast loading live chat button using just CSS and HTML, which when clicked
would load their Intercom bundles.

 
Postmark noted that their Help chat widget was always eagerly loaded, even
though it was only occasionally used by customers. The widget would pull in
314KB of script, more than their whole home page. To improve user-
experience, they replaced the widget with a fake replica using HTML and
CSS, loading the real-thing on click. This change reduced Time to Interactive
from 7.7s to 3.7s. 

Vanilla JavaScript

In JavaScript, dynamic import() enables lazy-loading modules and returns a
promise and can be quite powerful when applied correctly. Below is an
example where dynamic import is used in a button event listener to import the
lodash.sortby module and then use it.

Prior to dynamic import or for use-cases it doesn’t fit as well, dynamically
injecting scripts into the page using a Promise-based script loader was also
an option.

React
Let’s imagine we have a Chat application which has
a MessageList, MessageInput and an EmojiPicker component
(powered by emoji-mart, which is 98KB minified and gzipped). It can be
common to eagerly load all of these components on initial page-load.

Breaking the loading of this work up is relatively straight-forward with code-
splitting. The React.lazy method makes it easy to code-split a React
application on a component level using dynamic imports.

The React.lazy function provides a built-in way to separate components in
an application into separate chunks of JavaScript with very little legwork. You
can then take care of loading states when you couple it with the Suspense
component.

We can extend this idea to only import code for the EmojiPicker component
when the Emoji icon is clicked in a MessageInput, rather than eagerly when
the application initially loads:

Import-on-interaction for first-party code as part of progressive
loading

Loading code on interaction also happens to be a key part of how Google
handles progressive loading in large applications like Flights and Photos. To
illustrate this, let’s take a look at an example previously presented by Shubhie
Panicker.

Imagine a user is planning a trip to Mumbai, India and they visit Google Hotels
to look at prices. All of the resources needed for this interaction could be
loaded eagerly upfront, but if a user hasn’t selected any destination, the
HTML/CSS/JS required for the map would be unnecessary.

 
In the simplest download scenario, imagine Google Hotels is using
naive client-side rendering (CSR). All the code would be downloaded and
processed upfront: HTML, followed by JS, CSS and then fetching the data,
only to render once we have everything. However, this leaves the user waiting
a long time with nothing displayed on-screen. A big chunk of the JavaScript
and CSS may be unnecessary.

 

Next, imagine this experience moved to server-side rendering (SSR). We
would allow the user to get a visually complete page sooner, which is great,
however it wouldn’t be interactive until the data is fetched from the server and
the client framework completes hydration.

 
SSR can be an improvement, but the user may have an uncanny valley
experience where the page looks ready, but they are unable to tap on
anything. Sometimes this is referred to as rage clicks as users tend to click
over and over again repeatedly in frustration.

Returning to the Google Hotels search example, if we zoom in to the UI a little
we can see that when a user clicks on "more filters" to find exactly the right
hotel, the code required for that component is downloaded.

Only very minimal code is downloaded initially and beyond this, user
interaction dictates which code is sent down when.

Let’s take a closer look at this loading scenario.

There are a number of important aspects to interaction-driven late-loading:

First, we download the minimal code initially so the page is visually complete
quickly.

Next, as the user starts interacting with the page we use those interactions to
determine which other code to load. For example loading the code for the
"more filters" component. This means code for many features on the page are
never sent down to the browser, as the user didn’t need to use them.

 

How do we avoid losing early clicks?

In the framework stack used by these Google teams, we can track clicks early
because the first chunk of HTML includes a small event library (JSAction)
which tracks all clicks before the framework is bootstrapped. The events are
used for two things:

• Triggering download of component code based on user interactions

• Replaying user interactions when the framework finishes bootstrapping

 
 

Other potential heuristics one could use include, loading component code:

• A period after idle time

• On user mouse hover over the relevant UI/button/call to action

• Based on a sliding scale of eagerness based on browser signals (e.g
network speed, Data Saver mode etc).

What about data?

The initial data which is used to render the page is included in the initial
page’s SSR HTML and streamed. Data that is late loaded is downloaded
based on user interactions as we know what component it goes with.

This completes the import-on-interaction picture with data-fetching working
similar to how CSS and JS function. As the component is aware of what code
and data it needs, all of its resources are never more than a request away.

This functions as we create a graph of components and their dependencies
during build time. The web application is able to refer to this graph at any point
and quickly fetch the resources (code and data) needed for any component. It
also means we code-split based on the component rather than the route.

For a walkthrough of the above example, see Elevating the Web Platform with
the JavaScript Community.

Trade-offs

Shifting costly work closer to user-interaction can optimize how quickly pages
initially load, however the technique is not without trade-offs.

What happens if it takes a long time to load a script after the user
clicks?

In the Google Hotels example, small granular chunks minimize the chance a
user is going to wait long for code and data to fetch and execute. In some of
the other cases, a large dependency may indeed introduce this concern on
slower networks.

One way to reduce the chance of this happening is to better break-up the
loading of, or prefetch these resources after critical content in the page is
done loading. I’d encourage measuring the impact of this to determine how
much it’s a real application in your apps.

What about lack of functionality before user interaction?

Another trade-off with facades is a lack of functionality prior to user interaction.
An embedded video player for example will not be able to autoplay media. If
such functionality is key, you might consider alternative approaches to loading
the resources, such as lazy-loading these third-party iframes on the user
scrolling them into view rather than deferring load until interaction.

Replacing interactive embeds with a static variant

We have discussed the import-on-interaction pattern and progressive loading,
but what about going entirely static for the embeds use-case?.

The final rendered content from an embed may be needed immediately in
some cases e.g a social media post that is visible in the initial viewport. This
can also introduce its own challenges when the embed brings in 2-3MB of
JavaScript. Because the embed content is needed right away, lazy-loading
and facades may be less applicable.

If optimizing for performance, it's possible to entirely replace an embed with a
static variant that looks similar, linking out to a more interactive version (e.g
the original social media post). At build time, the data for the embed can be
pulled in and transformed into a static HTML version.

This is the approach @wongmjane leveraged on their blog for one type of
social media embed, improving both page load performance and removing
the Cumulative Layout Shift experienced due to the embed code enhancing
the fallback text, causing layout shifts.

While static replacements can be good for performance, they do often require
doing something custom so keep this in mind when evaluating your options.

 
Conclusions
First-party JavaScript often impacts the interaction readiness of modern pages
on the web, but it can often get delayed on the network behind non-critical JS
from either first or third-party sources that keep the main thread busy.

In general, avoid synchronous third-party scripts in the document head and
aim to load non-blocking third-party scripts after first-party JS has finished
loading. Patterns like import-on-interaction give us a way to defer the loading
of non-critical resources to a point when a user is much more likely to need
the UI they power.

With special thanks to Shubhie Panicker, Connor Clark, Patrick Hulce, Anton
Karlovskiy and Adam Raine for their input.

Route Based Splitting
Dynamically load components based on the current route

 
We can request resources that are only needed for specific routes, by
adding route-based splitting. By combining React Suspense with libraries
such as react-router, we can dynamically load components based on the
current route.

 

 
By lazily loading the components per route, we're only
requesting the bundle that contains the code that's necessary
for the current route. Since most people are used to the fact that there may be
some loading time during a redirect, it's the perfect place to lazily load
components!

Bundle Splitting
Split your code into small, reusable pieces

When building a modern web application, bundlers such
as Webpack or Rollup take an application's source code, and bundle this
together into one or more bundles. When a user visits a website, the bundle is
requested and loaded in order to display the data to the user's screen.

JavaScript engines such as V8 are able to parse and compile data that's been
requested by the user as it's being loaded. Although modern browsers have
evolved to parse and compile the code as quickly and performant as possible,
the developer is still in charge of optimizing two steps in the process:
the loading time and execution time of the requested data. We want to make
sure we're keeping the execution time as short as possible to prevent blocking
the main thread

Even though modern browsers are able to stream the bundle as it arrives, it
can still take a significant time before the first pixel is painted on the user's
device. The bigger the bundle the longer it can take before the engine reaches
the line on which the first rendering call has been made. Until that time, the
user has to stare at a blank screen for quite some time, which can be.. highly
frustrating!

We want to display data to the user as quickly as possible. A larger bundle
 leads to an increased amount of loading time, processing time, and execution
time. It would be great if we could reduce the size of this bundle, in order to
speed things up.

Instead of requesting one giant bundle that contains unnecessary code, we
can split the bundle into multiple smaller bundles!

By bundle-splitting the application, we can reduce the time it takes to load,
process and execute a bundle! By reducing the loading and execution time,
we can reduce the time it takes before the first content has been painted on
the user's screen, the First Contentful Paint, and the time it takes before the
largest component has been rendered to the screen, the Largest Contentful
Paint.

Although being able to see data on our screen is great, we don't just want
to see the content. In order to have a fully functioning application, we want
users to be able to interact with it as well! The UI only becomes interactive
after the bundle has been loaded and executed. The time it takes before all
content has been painted to the screen and has been made interactive, is
called the Time To Interactive.

A bigger bundle doesn't necessarily mean a longer execution time. It could
happen that we loaded a ton of code that the user won't even use! Maybe
some parts of the bundle will only get executed on a certain user interaction,
which the user may or may not do!

The engine still has to load, parse and compile code that's not even used on
the initial render before the user is able to see anything on their screen.
Although the parsing and compilation costs can be practically ignored due to
the browser's performant way of handling these two steps, fetching a larger
bundle than necessary can hurt the performance of your application. Users on
low-end devices or slower networks will see a significant increase in loading
time before the bundle has been fetched.

 

The first part still had to be loaded and processed, even though the engine
only used the last part of the file in order to . Instead of intially requesting parts
of the code that don't have a high priority in the current navigation, we can
separate this code from the code that's needed in order to render the initial
page.

By bundle-splitting the large bundle into two smaller
bundles, main.bundle.js and emoji-picker.bundle.js, we reduce
the initial loading time by fetching a smaller amount of data.

In this project, we'll cover some methods that allow us to bundle-split our
application into multiple smaller bundles, and load the resources in the most
efficient and performant ways.

PRPL Pattern
Optimize initial load through precaching, lazy loading, and minimizing

roundtrips

 
Making our applications globally accessible can be a challenge! We have to
make sure the application is performant on low-end devices and in regions
with a poor internet connectivity. In order to make sure our application can
load as efficiently as possible in difficult conditions, we can use the PRPL
pattern.

The PRPL pattern focuses on four main performance considerations:

• Pushing critical resources efficiently, which minimizes the amount of
roundtrips to the server and reducing the loading time.

• Rendering the initial route soon as possible to improve the user experience

• Pre-caching assets in the background for frequently visited routes to
minimize the amount of requests to the server and enable a better offline
experience

• Lazily loading routes or assets that aren’t requested as frequently

When we want to visit a website, we first have to make a request to the server
in order to get those resources. The file that the entrypoint points to gets
returned from the server, which is usually our application’s initial HTML file!

The browser’s HTML parser starts to parse this data as soon as it starts
receiving it from the server. If the parser discovers that more resources are
needed, such as stylesheets or scripts, another HTTP request is sent to the
server in order to get those resources!

Having to repeatedly request the resources isn’t optimal, as we’re trying to
minimize the amount of round trips between the client and the server!

 
For a long time, we used HTTP/1.1 in order to communicate between the
client and the server. Although HTTP/1.1 introduced many improvement
compared to HTTP/1.0, such as being able to keep the TCP connection
 between the client and the server alive before a new HTTP requests gets
sent with the keep-alive header, there were still some issues that had to be
solved!

HTTP/2 introduced some significant changes compared to HTTP/1.1, which
make it easier for us to optimize the message exchange between the client
and the server.

Whereas HTTP/1.1 used a newline delimited plaintext protocol in the requests
and responses, HTTP/2 splits the requests and responses up in smaller
pieces called frames. An HTTP request that contains headers and a body field
gets split into at least two frames: a headers frame, and a data frame!

HTTP/1.1 had a maximum amount of 6 TCP connections between the client
and the server. Before a new request can get sent over the same TCP
connection, the previous request has to be resolved! If the previous request is
taking a long time to resolve, this request is blocking the other requests from
being sent. This common issue is called head of line blocking, and can
increase the loading time of certain resources!

HTTP/2 makes use of bidirectional streams, which makes it possible to have
one single TCP connection that includes multiple bidirectional streams, which
can carry multiple request and response frames between the client and the
server!

Once the server has received all request frames for that specific request, it
reassembles them and generates response frames. These response frames
 are sent back to the client, which reassembles them. Since the stream is
bidirectional, we can send both request and response frames over the
same stream.

HTTP/2 solves head of line blocking by allowing multiple requests to get sent
on the same TCP connection before the previous request resolves!

HTTP/2 also introduced a more optimized way of fetching data, called server
push. Instead of having to explicitly ask for resources each time by sending an
HTTP request, the server can send the additional resources automatically, by
“pushing” these resources.

 
After the client has received the additional resources, the resources will get
stored in browser cache. When the resources get discovered while parsing
the entry file, the browser can quickly get the resources from cache instead of
having to make an HTTP request to the server!

Although pushing resources reduces the amount of time to receive additional
resources, server push is not HTTP cache aware! The pushed resources
won’t be available to us the next time we visit the website, and will have to be
requested again. In order to solve this, the PRPL pattern uses service
workers after the initial load to cache those resources in order to make sure
the client isn’t making unnecessary requests.

As the authors of a site, we usually know what resources are critical to fetch
early on, while browsers do their best to guess this. Luckily, we can help the
browser by adding a preload resource hint to the critical resources!

By telling the browser that you’d like to preload a certain resource, you’re
telling the browser that you would like to fetch it sooner than the browser
would otherwise discover it! Preloading is a great way to optimize the time it
takes to load resources that are critical for the current route.

Although preloading resources are a great way to reduce the amount of
roundtrips and optimize loading time, pushing too many files can be harmful.
The browser’s cache is limited, and you may be unnecessarily
using bandwidth by requesting resources that weren’t actually needed by the
client.

 
 
 

The PRPL pattern focuses on optimizing the initial load. No other resources
get loaded before the initial route has loaded and rendered completely!

We can achieve this by code-splitting our application into small, performant
bundles. Those bundles should make it possible for the users to only load the
resources they need, when they need it, while also maximizing cachability!
Caching larger bundles can be an issue. It can happen that multiple bundles
share the same resources.

A browser has a hard time identifying which parts of the bundle are shared
between multiple routes, and can therefore not cache these resources.
Caching resources is important to reduce the number of roundtrips to the
server, and to make our application offline-friendly!

When working with the PRPL pattern, we need to make sure that the bundles
we’re requesting contain the minimal amount of resources we need at that
time, and are cachable by the browser. In some cases, this could mean that
having no bundles at all would be more performant, and we could simply work
with unbundled modules!

The benefit of being able to dynamically request minimal resources by
bundling an application can easily be mocked by configuring the browser and
server to support HTTP/2 push, and caching the resources efficiently. For
browsers that don’t support HTTP/2 server push, we can create a build that is
optimized to minimize the amount of roundtrips. The client doesn’t have to
know whether it’s receiving a bundled or unbundled resource: the server
delivers the appropriate build for each browser.

The PRPL pattern often uses an app shell as its main entry point, which is a
minimal file that contains most of the application’s logic and is shared between
routes! It also contains the application’s router, which can dynamically request
the necessary resources.

The PRPL pattern makes sure that no other resources get requested or
rendered before the initial route is visible on the user’s device. Once the initial
route has been loaded successfully, a server worker can get installed in order
to fetch the resources for the other frequently visited routes in the background!

Since this data is being fetched in the background, the user won’t experience
any delays. If a user wants to navigate to a frequently visited route that’s been
cached by the service worker, the service worker can quickly get the required
resources from cache instead of having to send a request to the server.

Resources for routes that aren’t as frequently visited can be dynamically
imported.

Tree Shaking
Reduce the bundle size by eliminating dead code

 

It can happen that we add code to our bundle that isn't used anywhere in our
application. This piece of dead code can be eliminated in order to reduce the
size of the bundle, and prevent unnecessarily loading more data! The process
of eliminating dead code before adding it to our bundle, is called tree-shaking

Although tree-shaking works for simple modules like the math module, there
are some cases in which tree-shaking can be tricky.

Concepts
Tree shaking is aimed at removing code that will never be used from a final
JavaScript bundle. When done right, it can reduce the size of your JavaScript
bundles and lower download, parse and (in some cases) execution time. For
most modern JavaScript apps that use a module bundler (like webpack or
Rollup), your bundler is what you would expect to automatically remove dead
code.

Consider your application and its dependencies as an abstract syntax tree (we
want to "shake" the syntax tree to optimize it). Each node in the tree is a
dependency that gives your app functionality. In Tree shaking, input files are
treated as a graph. Each node in the graph is a top level statement which is

called a "part" in the code. Tree shaking is a graph traversal which starts from
the entry point and marks any traversed paths for inclusion.

Every component can declare symbols, reference symbols, and rely on other
files. Even the "parts" are marked as having side effects or not. For example,
the statement let firstName = 'Jane' has no side effects because the
statement can be removed without any observed difference if nothing needs
foo. But the statement let firstName = getName() has side effects,
because the call to getName() can not be removed without changing the
meaning of the code, even if nothing needs firstName.

 
Imports
Only modules defined with the ES2015 module syntax (import and export) can
be tree-shaken. The way you import modules specifies whether the module
can be tree-shaken or not.

Tree shaking starts by visiting all parts of the entry point file with side effects,
and proceeds to traverse the edges of the graph until new sections are
reached. Once the traversal is completed, the JavaScript bundle includes only
the parts that were reached during the traversal. The other pieces are left out.
Let's say we define the following utilities.js file:

Then we have the following index.js file:

In this example, nap() isn't important and therefore won't be included in the
bundle.  

Side Effects
When we're importing an ES6 module, this module gets executed instantly. It
could happen that although we're not referencing the module's exports
anywhere in our code, the module itself affects the global scope while it's
being executed (polyfills or global stylesheets, for example). This is called
a side effect. Although we're not referencing the exports of the module
itself, if the module has exported values to begin with, the module cannot
be tree-shaken due to the special behavior when it's being imported!

 
The Webpack documentation gives a clear explanation on tree-shaking and
how to avoid breaking it.

Preload
Inform the browser of critical resources before they are discovered

 
Preload (<link rel="preload">) is a browser optimization that allows
critical resources (that may be discovered late) to be to be requested earlier. If
you are comfortable thinking about how to manually order the loading of your
key resources, it can have a positive impact on loading performance and
metrics in the Core Web Vitals. That said, preload is not a panacea and
requires an awareness of some trade-offs.

When optimizing for metrics like Time To Interactive or First Input
Delay, preload can be useful to load JavaScript bundles (or chunks)
that are necessary for interactivity. Keep in mind that great care is needed
when using preload as you want to avoid improving interactivity at the cost of

delaying resources (like hero images or fonts) necessary for First Contentful
Paint or Largest Contentful Paint.

If you are trying to optimize the loading of first-party JavaScript, you can also
consider using <script defer> in the document <head> vs. <body> to
help with early discover of these resources. 

Preload in single-page apps

While prefetching is a great way to cache resources that may be requested
some time soon, we can preload resources that need to be used instantly.
Maybe it's a certain font that is used on the initial render, or certain images
that the user sees right away.

Say our EmojiPicker component should be visible instantly on the initial
render. Although it should not be included in the main bundle, it should get
loaded in parallel. Just like prefetch, we can add a magic comment in order to
let Webpack know that this module should be preloaded.

ChatInput.js

 
Webpack 4.6.0+ allows preloading of resources by adding  
/* webpackPreload: true */ to the import. In order to make
preloading work in older versions of webpack, you'll need to add
the preload-webpack-plugin to your webpack config.

webpack.config.js

After building the application, we can see that the EmojiPicker will be
prefetched.

 
The actual output is visible as a link tag with rel="preload" in
the head of our document.

 
The preloaded EmojiPicker could be loaded in parallel with the initial
bundle. Unlike prefetch, where the browser still had a say in whether it think
it's got a good enough internet connection and bandwidth to actually prefetch
the resource, a preloaded resource will get preloaded no matter what.

Instead of having to wait until the EmojiPicker gets loaded after the initial
render, the resource will be available to us instantly! As we're loading assets
with smarter ordering, the initial loading time may increase significantly
depending on your users device and internet connection. Only preload the
resources that have to be visible ~1 second after the initial render. 

Preload + the async hack

Should you wish for browsers to download a script as high-priority, but not
block the parser waiting for a script, you can take advantage of the preload
+ async hack below. The download of other resources may be delayed by the
preload in this case, but this is a trade-off a developer has to make:

Conclusions
Again, use preload sparingly and always measure its impact in production. If
the preload for your image is earlier in the document than it is, this can help
browsers discover it (and order relative to other resources). When used
incorrectly, preloading can cause your image to delay First Contentful Paint
(e.g CSS, Fonts) - the opposite of what you want. Also note that for such
reprioritization efforts to be effective, it also depends on servers prioritizing
requests correctly.

You may also find <link rel="preload"> to be helpful for cases where
you need to fetch scripts without executing them.

Prefetch
Fetch and cache resources that may be requested some time soon

 
Prefetch (<link rel="prefetch">) is a browser optimization which allows
us to fetch resources that may be needed for subsequent routes or pages
before they are needed. Prefetching can be achieved in a few ways. It can be
done declaratively in HTML (such as in the example below), via a HTTP
Header (Link: </js/chat-widget.js>; rel=prefetch), Service
Workers or via more custom means such as through Webpack.

In the examples showing how we can import modules based on visibility or
interaction, we saw that there was often some delay between clicking on the
button in order to toggle the component, and showing the actual component
on the screen. This happened, since the module still had to get requested and
loaded when the user clicked on the button!

 

 

In many cases, we know that users will request certain resources soon after
the initial render of a page. Although they may not visible instantly, thus
shouldn't be included in the initial bundle, it would be great to reduce the
loading time as much as possible to give a better user experience!

Components or resources that we know are likely to be used at some point in
the application can be prefetched. We can let Webpack know that certain
bundles need to be prefetched, by adding a magic comment to the import
statement: /* webpackPrefetch: true */.

 
After building the application, we can see that the EmojiPicker will be
prefetched.

 
The actual output is visible as a link tag with rel="prefetch" in the head of our
document.

 
 

Modules that are prefetched are requested and loaded by the browser
even before the user requested the resource. When the browser is idle and
calculates that it's got enough bandwidth, it will make a request in order to
load the resource, and cache it. Having the resource cached can reduce the
loading time significantly, as we don't have to wait for the request to finish
after the user has clicked the button. It can simply get the loaded resource
from cache.

 
Although prefetching is a great way to optimize the loading time, don't overdo
it. If the user ended up never requesting the EmojiPicker component, we
unnecessarily loaded the resource. This could potentially cost a user money,
or slow down the application. Only prefetch the necessary resources.

List Virtualization
Optimize list performance with list virtualization

In this guide, we will discuss list virtualization (also known as windowing). This
is the idea of rendering only visible rows of content in a dynamic list instead of
the entire list. The rows rendered are only a small subset of the full list with
what is visible (the window) moving as the user scrolls. This can improve
rendering performance.

If you use React and need to display large lists of data efficiently, you may be
familiar with react-virtualized. It's a windowing library by Brian Vaughn that
renders only the items currently visible in a list (within a scrolling "viewport").
This means you don't need to pay the cost of thousands of rows of data being
rendered at once. A video walkthrough of list virtualization with react-window
accompanies this write-up.

How does list virtualization work?
"Virtualizing" a list of items involves maintaining a window and moving that
window around your list. Windowing in react-virtualized works by:

• Having a small container DOM element (e.g) with relative positioning
(window)

• Having a big DOM element for scrolling

• Absolutely positioning children inside the container, setting their styles for
top, left, width and height.

Rather than rendering 1000s of elements from a list at once (which can cause
slower initial rendering or impact scroll performance), virtualization focuses on
rendering just items visible to the user.

This can help keep list rendering fast on mid to low-end devices. You can
fetch/display more items as the user scrolls, unloading previous entries and

replacing them with new ones. 

A smaller alternative to react-virtualized

react-window is a rewrite of react-virtualized by the same author
aiming to be smaller, faster and more tree-shakeable.

 

In a tree-shakeable library, size is a function of which API surfaces you

choose to use. I've seen ~20-30KB (gzipped) savings using it in place of
react-virtualized:

The APIs for both packages are similar and where they differ, react-window
tends to be simpler. react-window's components include: 
 
List 
Lists render a windowed list (row) of elements meaning that only the visible
rows are displayed to users (e.g FixedSizeList, VariableSizeList).
Lists use a Grid (internally) to render rows, relaying props to that inner Grid.

Row

Row

Row

Row

Row

Row

Not Rendered

Not Rendered

 
Rendering a list of data using React

Here's an example of rendering a list of simple data (itemsArray) using
React:

Rendering a list using react-window

...and here's the same example using react-window's FixedSizeList, which
takes a few props (width, height, itemCount, itemSize) and a row
rendering function passed as a child:

Grid  
Grid renders tabular data with virtualization along the vertical and horizontal
axes (e.g FizedSizeGrid, VariableSizeGrid). It only renders the Grid
cells needed to fill itself based on current horizontal/vertical scroll positions.

If we wanted to render the same list as earlier with a grid layout, assuming our
input is a multi-dimensional array, we could accomplish this
using FixedSizeGrid as follows:

Cell Cell Cell Not Rendered

Cell Cell Cell Not Rendered

Cell Cell Cell Not Rendered

Not Rendered Not Rendered Not Rendered Not Rendered

More in-depth react-window examples  
 
Scott Taylor implemented an open-source Pitchfork music reviews
scraper (src) using react-window and FixedSizeGrid.

Pitchfork scraper uses react-window-infinite-loader (demo) which
helps break large data sets down into chunks that can be loaded as they are
scrolled into view. Here's a snippet of how react-window-infinite-
loader is incorporated in this app:

What if we have even more complex needs for a grid virtualization solution?
We found a The Movie Database demo app that used react-virtualized and
Infinite Loader under the hood.

Porting it over to react-window and react-window-infinite-loader didn't take
long, but we did discover a few components were not yet supported.
Regardless, the final functionality is pretty close. The missing components
were WindowScroller and AutoSizer...which we'll look at next.

What's missing from react-window?  
 
react-window does not yet have the complete API surface of react-
virtualized, so do check the comparison docs if considering it. What's
missing?

• WindowScroller - This is a react-virtualized component that
enables Lists to be scrolled based on the window's scroll positions. There
are currently no plans to implement this for react-window so you'll need to
solve this in userland.

• AutoSizer - HOC that grows to fit all of the available space, automatically
adjusting the width and height of a single child. Brian implemented this as
a standalone package. Follow this issue for the latest.

• CellMeasurer - HOC automatically measuring a cell's content by
rendering it in a way that is not visible to the user. Follow here for
discussion on support.

That said, we found react-window sufficient for most of our needs with what it
includes out of the box. 

Improvements in the web platform

Some modern browsers now support CSS content-visibility. content-
visibility:auto allows you to skip rendering & painting offscreen content
until needed. If you have a long HTML document with costly rendering,
consider trying the property out.

For rendering lists of dynamic content, I still recommend using a library like
react-window. It would be hard to have a  
content-visbility: hidden version of such a library that beats a
version aggressively using display: none or removing DOM nodes when
offscreen like many list virtualization libraries may do today.

Conclusions
That's a wrap for our book! We hope you've enjoyed it as much as we did
writing it.

Patterns are time-tested templates for writing code. They can be really
powerful, whether you're a seasoned developer or beginner, bringing a
valuable level of resilience and flexibility to your codebase.

Keep in mind that patterns are not a silver bullet. Take advantage of them
when you have a practical need to solve a problem and when you can use
them to write better code. Otherwise, be careful to avoid applying patterns
arbitrarily. If a problem you're attempting to solve is just hypothetical, maybe
it's premature to consider a pattern.

Always keep simplicity in mind. We try to when evaluating these ideas for the
apps we write and hope you will too. Ultimately what works best is often a
balance of trade-offs.

Understand if a pattern is helping you achieve your goals; whether it's better
user-experience, developer-experience or just smarter architecture. When you
have a seasoned knowledge of patterns, you'll appreciate when it may be a
good time to use one. Otherwise, study patterns and explore if they may be a
good fit for the problem you're attempting to solve. Once you've picked a
pattern, make sure you're evaluating the trade-offs of using it. If it looks
reasonable, you can use it.

Feel free to share "Learning Patterns" with your friends and colleagues. The
book is freely available at Patterns.dev and we welcome any feedback you
have. Until next time, so long and good luck, friends!

~ Lydia and Addy

	Overview of React.js
	Singleton Pattern
	Proxy Pattern
	Provider Pattern
	Prototype Pattern
	Container/Presentational Pattern
	Observer Pattern
	Module Pattern
	Mixin Pattern
	Mediator/Middleware Pattern
	Render Props Pattern
	Hooks Pattern
	HOC Pattern
	Flyweight Pattern
	Factory Pattern
	Compound Pattern
	Command Pattern
	Overview of Next.js
	Client-side Rendering
	Server-side Rendering
	Static Rendering
	Incremental Static Generation
	Progressive Hydration
	Streaming Server-Side Rendering
	React Server Components
	Selective Hydration
	Optimizing for the Core Web Vitals on a Next.js app
	Islands Architecture
	Optimize your loading sequence
	Static Import
	Dynamic Import
	Import on Visibility
	Import on Interaction
	Route Based Splitting
	Bundle Splitting
	PRPL Pattern
	Tree Shaking
	Preload
	Prefetch
	List Virtualization
	Conclusions

